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1 Introduction

1.1 Linear DC analysis

1.1.1 Nodal analysis

The simplest kind of circuit simulation deals with constant sources and resistors.
There are a number of different techniques to formulate the network equations in
a general way, the most convenient for computer simulation being nodal analysis
(NA). This method formulates equations in the GV = I matrix form, which for
current sources and resistors is a straightforward application of the Kirchoff
current law (KCL) at each node. V is the unknown vector of node voltages, I
the vector of current sources and G the conductance matrix.
As an interesting side effect of this formulation, we can derive the equations on
a per-component basis : each component “stamps” itself in the G matrix and
I right-hand side, and the linear system is then solved for V . For instance, a
resistor between node i and node j contributes to the current flowing to node j
by 1

R (vj − vi) and to the current flowing to node i by the opposite of the same
amount. So its “stamp” is four entries in the G matrix : 1/R in (i, i) and (j, j),
and −1/R in (i, j) and (j, i). The stamp for the current source is derived in the
same way : a current source of known current J between node i and j adds J
to entry number i of I, and −J to entry number j of I.
The algorithm for nodal analysis is :

• Iterate through each component, and stamp them according to their type
in the global G matrix and I vector

• Solve the linear system (by any direct or iterative method ; we use LU
decomposition) for the V vector

1.1.2 Modified nodal analysis

Using NA, we can simulate circuits comprised of resistors and current sources.
For the other basic building block, the voltage source, an artifice is required.
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Since we can not incorporate the missing equations directly, we add another
unknown for every voltage source: this is known as modified nodal analysis
(MNA) and is at the core of edacious. The idea is to split the unknown vector
(called x in the simulation) and the right-hand side (called z) in two parts :
the first corresponds to classical nodal analysis, the second corresponds to the
equations of voltage sources.
The second part of the unknowns are the currents flowing through the voltage
sources. A voltage source of known voltage V between nodes i and j adds the
unknown Ii,j to the unknowns vector, contributes to the existing equations by
adding Ii,j to ii and −Ii,j to ij , and adds the new equation Vj −Vi = V . These
equations, like the previous ones, can be incorporated by stamping.
The new matrix relation becomes Ax = z :

• z is (zNA, zMNA), zNA being the stamps of current sources, and zMNA

the stamps of voltage sources.

• x is (xNA, xMNA), xNA being the voltages at the nodes, and xMNA the
currents flowing through the voltage sources.

• A is the block matrix (G,C;B,D), G being the admittance matrix of
NA, and B, C, D representing various constitutive equations pertaining to
voltage sources.

1.2 Non-linear DC analysis

To simulate real circuits containing transistors and diodes, we are interested
in simulating components having arbitrary i-v relations. We use the standard
Newton method, described in any numerical analysis textbook. The derivation
of how the multidimensional Newton method leads to our algorithm is a bit
tedious, but here is an intuitive explanation : the Newton method works by
linearizing the equation around the operating point Xn, solving the linearized
equation to obtain Xn+1, and iterating until convergence (being when Xn is
near Xn+1; the precise definition of near involving a compromise between speed
and accuracy). In circuits, we linearize the i-v characteristic around point vn :
i = i(vn)+(dv/di)(v−vn). That allows us to form companion models describing
the linearized component, which we can stamp. The equation is then solved for
another operating point, and the cycle continues until a stable answer is found.

1.3 Transient analysis

Transient analysis uses pretty much the same idea as non-linear analysis. We
have to take into account are energy storage components, namely capacitors and
inductors. For example, the constitutive relation for the inductor is u = L di

dt , or

equivalently i(t + ∆t) = i(t) + 1

L

∫ t+∆t

t
u(x)dx. We then use an approximation

method (we implement single-step methods, namely Forward Euler, Backward
Euler and Trapezoidal Rule) to compute this integral. This leads to a formula
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describing the behavior of the component (i.e. a relationship between i(t +
∆t) and v(t + ∆t)), which we can then convert to a companion model and
use to compute the solution, using a Newton loop to accomodate non-linear
components. This gives us a new operating point to use for the next time step.

1.4 Summary

The structure of the final algorithm is as follow :

Trans ient loop :
while the s imu la t i on i s not over

Formulate companion models f o r energy s to rage
components , us ing cur rent operat ing po int

Newton loop :
while the convergence i s not achieved

Formulate companion models f o r non−l i n e a r components ,
us ing cur rent operat ing po int

Solve f o r new operat ing po int
end while

end while

2 Non-linear components

2.1 PN Diode

As a two-terminal device with only one distinct operating region, the PN diode
was a natural starting point for non-linear simulation. The current model does
not include parasitic capacitances, but this is planned for the future.

The i-v relation describing a diode is the following:

i(v) = IS(ev/Vt − 1) (1)

where IS is the reverse saturation current and Vt is the thermal voltage
(kT/q). From this, we derive the small-signal conductance:

g =
di

dv
= (IS/Vt)e

v/VT ≈ i(v)/Vt (2)

The error committed in the approximation is IS/Vt, which for common diodes
is around 10−12S. This is negligible for ordinary applications and allows us to
avoid computing the exp function twice.
In simulation, we use the Newton-Raphson method to solve circuits with non-
linear elements. The method works by linearizing the constitutive equations,
solving for a new operating point, and iterating until convergence. The lin-
earized curve around operating point vn is :

ilin(v) = i(vn) + (v − vn)
di

dv
(vn) (3)
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By rearranging this equation, we find the i-v relation ilin = (i(vn) − gvn) +
gv. Hence the appropriate companion model for a diode is a conductance g
in parallel with a current source i(vn) − gvn, not simply i(vn), as one might
suspect. The result is shown in Figure 1.

Ieq g

+

-

geq = i(vn)/Vt

Ieq = i(vn) − geqvn

Figure 1: Linear companion model for diode
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2.2 Metal-Oxide-Silicon Field-Effect Transistor

The next simplest non-linear devices are n- and p-channel MOSFETs, as no
current flows into the gate, and the non-linear source-to-drain port depends on
only two parameters, vGS and vDS . The model is complicated slightly, however,
by the fact that MOSFETs have three distinct operating regions. For brevity,
we derive only the results for n-channel MOSFETs. Similar results for p-channel
MOSFETs are presented at the end of this subsection.

2.2.1 Cutoff: vGS − VT < 0

Cutoff is a trivial operating region, as all of the companion model parameters
(depicted in Fig. 2) zero. No current flows into any of the nodes.

gmvGS go Id,eq

G

S

D

Figure 2: Linear companion model for n-channel MOSFET

2.2.2 Saturation: 0 ≤ vGS − VT < vDS

In saturation, the following large-signal model holds:

ID =
K

2
(vGS − VT )2(1 + (vDS − vDS,sat)/Va) (4)

where Va is the Early voltage and vDS,sat = vGS − VT . Since ID is a func-
tion of two variables, we now use partial derivatives to find the small-signal
conductances across the DS port.

gm =
∂ID

∂vGS
= K(vGS − VT )(1 + (vDS − vDS,sat)/Va) =

√

2KID (5)

go =
∂ID

∂vDS
=

K

2
(vGS − VT )2/Va = IS/Va (6)

We seek to define a bias current from drain to source that will cause the
node voltages to evolve by Newton-Raphson iteration, as we did for the diode
in the previous subsection. We now use the multivariable form of the iteration
equation:

ID,n+1 = ID + gm(vGS,n+1 − vGS,n) + go(vDS,n+1 − vDS,n) (7)
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Rearranging this equation, we find that ID,n+1 = (ID−gmvGS,n−govDS,n)+
gmvGS,n+1 + govDS,n+1. Hence the bias current is ID,eq = ID − gmvGS,n −

govDS,n. Although we will not derive it here, it should now be apparent that
the following general result holds when dermining bias currents for Newton-
Raphson iteration:

Ieq = I(Vi) −
∑

v∈V

∂I

∂v
vi (8)

where V is the set of device port voltages and Vi is the set of calculated node
voltages from the previous iteration.

2.2.3 Triode: 0 ≤ vDS ≤ vGS − VT

The drain current in this operating region is related to the vGS and vDS by
Equation 9. Note that this model does not include the Early effect.

IS = K((vGS − VT ) − vDS/2)vDS (9)

Applying partial derivatives, we find the small-signal conductances:

gm =
∂ID

∂vGS
= KvDS (10)

go =
∂ID

∂vDS
= K((vGS − VT ) − vDS) (11)

Again, ID,eq = ID − gmvGS − govDS .
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2.2.4 p-channel Results

The linear companion model for a p-channel MOSFET is shown in Figure 3, and
the values of gm, go, and IS,eq for the various operating regions are summarized
in Table 1. For all operating regions, IS,eq is related to IS , gm, and go by the
following equation:

IS,eq = IS − gmvSG − govSD (12)

gmvGS go IS,eq

G

S

D

Figure 3: Linear companion model for p-channel MOSFET
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Table 1: PMOS companion model parameters

Operating Region Parameters

Cutoff:
vSG − VT < 0

IS = 0

gm = 0

go = 0

Saturation:
0 ≤ vGS − VT < vDS

IS =
K

2
(vSG − VT )2(1 + (vSD − vSD,sat)/Va)

gm =
√

2KIS

go = IS/Va

Triode:
0 ≤ vDS ≤ vGS − VT

IS = K((vSG − VT ) − vSD/2)vSD

gm = KvSD

go = K((vSG − VT ) − vSD)

2.3 Bipolar Junction Transistor

Companion models for BJTs are the most complex circuits presented here be-
cause current flows between all nodes. The model is not quite as unwieldy as it
looks, however, because there is only one operating region.

We start with a simplified, mid-band Gummel-Poon NPN model, as shown
in Figure 4. The base currents are defined as follows:

ibf = (Ifs/βf )(evBE/Vt − 1) (13)

ibr = (Irs/βr)(e
vBC/Vt − 1) (14)

Then, defining the small-signal conductances as in Figure 5, we have

gπ,f =
∂ibf

∂vBE
= (Ifs/βf )evBE/Vt/Vt ≈ Ibf/Vt (15)

gπ,r =
∂ibr

∂vBC
= (Irs/βr)e

vBC/Vt/Vt ≈ Ibr/Vt (16)

gm,f =
∂iC

∂vBE
= Ifse

vBE/Vt/Vt = βfgπ,f (17)
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gm,r =
∂iC

∂vBC
= Irse

vBC/Vt/Vt = βrgπ,r (18)

We add the Early effect by placing an output resistance across the CE port,
with conductance IC/Va.

Using the general bias current formula (Eqn. 8), we find

Ibf,eq = Ibf(vBE) − gπ,fvBE (19)

Ibr,eq = Ibr(vBC) − gπ,rvBC (20)

IC,eq = IC(vBE , vBC) − gm,fvBE + gm,rvBC − govCE (21)

B

E

C

ibr

ibf
βfibf -βribr

Figure 4: Mid-band Gummel-Poon BJT Model

gπ,f

gπ,r

gm,fvBE gm,rvBC go IC,eq

Ibr,eq

Ibf,eq

B

E

C

Figure 5: Linear companion model for NPN BJT

The analogous model for a PNP BJT is shown in Figure 6, and the corre-
sponding parameters are listed below:

gπ,f =
∂ibf

∂vEB
= (Ifs/βf )evEB/Vt/Vt ≈ Ibf/Vt (22)
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gπ,r =
∂ibr

∂vCB
= (Irs/βr)e

vCB/Vt/Vt ≈ Ibr/Vt (23)

gm,f =
∂iE

∂vEB
= Ifse

vEB/Vt/Vt = βfgπ,f (24)

gm,r =
∂iE

∂vCB
= Irse

vCB/Vt/Vt = βrgπ,r (25)

go = IE/Va (26)

Ibf,eq = Ibf(vEB) − gπ,fvEB (27)

Ibr,eq = Ibr(vCB) − gπ,rvCB (28)

IC,eq = IC(vEB, vCB) − gm,fvEB + gm,rvCB − govEC (29)

gπ,r

gπ,f

gm,fvEB gm,rvCB go IE,eq

Ibf,eq

Ibr,eq

B

E

C

Figure 6: Linear companion model for PNP BJT
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3 Energy storage components

As explained in introduction, transient simulation of energy storage require
companion models to be formed. We present here the results for one-step inte-
gration methods : Backward Euler (BE), Forward Euler (FE) and Trapezoidal
Rule (TR)

3.1 Capacitor

In deriving the model parameters, we start with the differential equation relating
current to voltage in a capacitor:

I = C
dv

dt
(30)

We then transform this differential equation to an integral equation

v(t + ∆t) = v(t) +
1

C

∫ t+∆t

t

i(u)du (31)

We then use an integration method to get an expression for vn+1, which can be
reformulated as

vn+1 ≈ vn +
∆t

C
I (32)

How we define I determines the integration method implemented by the com-
panion model. Geometrically, it corresponds to the point at which we evaluate
the derivative : FE computes the derivative at the current point, BE at the next
point, and TR is an average of the two.
We can interpret this relation as an equivalent circuit (Figure 7), the so-called
“companion model”, consisting of a voltage source and a resistance. Table 2
summarizes three common integration methods and the corresponding model
parameters.
Note that when I depends on in + 1 (implicit method), the companion model
is in Thevenin form, and can also be expressed in Norton form. We choose
Thevenin model for the capacitor since it is more accurate : computers have
trouble dividing by small numbers such as ∆t, and this is precisely what Norton
models do. This can be explained by the fact that voltage is the state variable
of capacitors : v(t) is continuous, which ensures that, for small ∆t, v will not
vary too much.
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R

Veq

Figure 7: Linear companion model for capacitor

Method Parameters

Forward Euler:
I = in

Veq = vn +
∆t

C
in

R = 0

Backward Euler:
I = in+1

Veq = vn

R =
∆t

C

Trapezoidal:
I = (in + in+1)/2

Veq = vn +
∆t

2C
in

R =
∆t

2C

Table 2: Capacitor companion model parameters for integration methods

3.2 Inductor

The inductor is the dual of the capacitor, so similar results apply. We end up
with the formula

in+1 ≈ in +
∆t

L
V (33)

Again, V is determined by the integration method. The results are displayed
in Table 3. Again, we have the choice between Thevenin and Norton model for
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implicit methods, and for the same reasons (current is the state variable of the
inductor), we choose Norton model.

Ieq g

+

-

Figure 8: Linear companion model for inductor

Method Parameters

Forward Euler:
V = vn

Ieq = in +
∆t

L
vn

g = 0

Backward Euler:
V = vn+1

Ieq = in

g =
∆t

L

Trapezoidal:
V = (vn + vn+1)/2

Ieq = in +
∆t

2L
vn

g =
∆t

2L

Table 3: Inductor companion model parameters for integration methods
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