/* $OpenBSD: svc.c,v 1.21 2005/12/21 01:40:22 millert Exp $ */ /* * Sun RPC is a product of Sun Microsystems, Inc. and is provided for * unrestricted use provided that this legend is included on all tape * media and as a part of the software program in whole or part. Users * may copy or modify Sun RPC without charge, but are not authorized * to license or distribute it to anyone else except as part of a product or * program developed by the user. * * SUN RPC IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING THE * WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR * PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE. * * Sun RPC is provided with no support and without any obligation on the * part of Sun Microsystems, Inc. to assist in its use, correction, * modification or enhancement. * * SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE * INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY SUN RPC * OR ANY PART THEREOF. * * In no event will Sun Microsystems, Inc. be liable for any lost revenue * or profits or other special, indirect and consequential damages, even if * Sun has been advised of the possibility of such damages. * * Sun Microsystems, Inc. * 2550 Garcia Avenue * Mountain View, California 94043 */ /* * svc.c, Server-side remote procedure call interface. * * There are two sets of procedures here. The xprt routines are * for handling transport handles. The svc routines handle the * list of service routines. * * Copyright (C) 1984, Sun Microsystems, Inc. */ #include #include #include #include #include static SVCXPRT **xports; static int xportssize; #define RQCRED_SIZE 400 /* this size is excessive */ #define max(a, b) (a > b ? a : b) /* * The services list * Each entry represents a set of procedures (an rpc program). * The dispatch routine takes request structs and runs the * appropriate procedure. */ static struct svc_callout { struct svc_callout *sc_next; u_long sc_prog; u_long sc_vers; void (*sc_dispatch)(); } *svc_head; static struct svc_callout *svc_find(u_long, u_long, struct svc_callout **); static int svc_fd_insert(int); static int svc_fd_remove(int); int __svc_fdsetsize = FD_SETSIZE; fd_set *__svc_fdset = &svc_fdset; static int svc_pollfd_size; /* number of slots in svc_pollfd */ static int svc_used_pollfd; /* number of used slots in svc_pollfd */ static int *svc_pollfd_freelist; /* svc_pollfd free list */ static int svc_max_free; /* number of used slots in free list */ /* *************** SVCXPRT related stuff **************** */ /* * Activate a transport handle. */ void xprt_register(SVCXPRT *xprt) { /* ignore failure conditions */ (void) __xprt_register(xprt); } /* * Activate a transport handle. */ int __xprt_register(SVCXPRT *xprt) { int sock = xprt->xp_sock; if (xports == NULL || sock + 1 > xportssize) { SVCXPRT **xp; int size = FD_SETSIZE; while (sock + 1 > size) size += FD_SETSIZE; xp = (SVCXPRT **)mem_alloc(size * sizeof(SVCXPRT *)); if (xp == NULL) return (0); memset(xp, 0, size * sizeof(SVCXPRT *)); if (xports) { memcpy(xp, xports, xportssize * sizeof(SVCXPRT *)); free(xports); } xportssize = size; xports = xp; } if (!svc_fd_insert(sock)) return (0); xports[sock] = xprt; return (1); } /* * Insert a socket into svc_pollfd, svc_fdset and __svc_fdset. * If we are out of space, we allocate ~128 more slots than we * need now for future expansion. * We try to keep svc_pollfd well packed (no holes) as possible * so that poll(2) is efficient. */ static int svc_fd_insert(int sock) { int slot; /* * Find a slot for sock in svc_pollfd; four possible cases: * 1) need to allocate more space for svc_pollfd * 2) there is an entry on the free list * 3) the free list is empty (svc_used_pollfd is the next slot) */ if (svc_pollfd == NULL || svc_used_pollfd == svc_pollfd_size) { struct pollfd *pfd; int new_size, *new_freelist; new_size = svc_pollfd ? svc_pollfd_size + 128 : FD_SETSIZE; pfd = realloc(svc_pollfd, sizeof(*svc_pollfd) * new_size); if (pfd == NULL) return (0); /* no changes */ new_freelist = realloc(svc_pollfd_freelist, new_size / 2); if (new_freelist == NULL) { free(pfd); return (0); /* no changes */ } svc_pollfd = pfd; svc_pollfd_size = new_size; svc_pollfd_freelist = new_freelist; for (slot = svc_used_pollfd; slot < svc_pollfd_size; slot++) { svc_pollfd[slot].fd = -1; svc_pollfd[slot].events = svc_pollfd[slot].revents = 0; } slot = svc_used_pollfd; } else if (svc_max_free != 0) { /* there is an entry on the free list, use it */ slot = svc_pollfd_freelist[--svc_max_free]; } else { /* nothing on the free list but we have room to grow */ slot = svc_used_pollfd; } if (sock + 1 > __svc_fdsetsize) { fd_set *fds; size_t bytes; bytes = howmany(sock + 128, NFDBITS) * sizeof(fd_mask); /* realloc() would be nicer but it gets tricky... */ if ((fds = (fd_set *)mem_alloc(bytes)) != NULL) { memset(fds, 0, bytes); memcpy(fds, __svc_fdset, howmany(__svc_fdsetsize, NFDBITS) * sizeof(fd_mask)); if (__svc_fdset != &svc_fdset) free(__svc_fdset); __svc_fdset = fds; __svc_fdsetsize = bytes / sizeof(fd_mask); } } svc_pollfd[slot].fd = sock; svc_pollfd[slot].events = POLLIN; svc_used_pollfd++; if (svc_max_pollfd < slot + 1) svc_max_pollfd = slot + 1; if (sock < FD_SETSIZE) FD_SET(sock, &svc_fdset); else if (sock < __svc_fdsetsize) FD_SET(sock, __svc_fdset); svc_maxfd = max(svc_maxfd, sock); return (1); } /* * Remove a socket from svc_pollfd, svc_fdset and __svc_fdset. * Freed slots are placed on the free list. If the free list fills * up, we compact svc_pollfd (free list size == svc_pollfd_size /2). */ static int svc_fd_remove(int sock) { int slot; if (svc_pollfd == NULL) return (0); for (slot = 0; slot < svc_max_pollfd; slot++) { if (svc_pollfd[slot].fd == sock) { svc_pollfd[slot].fd = -1; svc_pollfd[slot].events = svc_pollfd[slot].revents = 0; svc_used_pollfd--; if (sock < FD_SETSIZE) FD_CLR(sock, &svc_fdset); else if (sock < __svc_fdsetsize) FD_CLR(sock, __svc_fdset); if (sock == svc_maxfd) { for (svc_maxfd--; svc_maxfd >= 0; svc_maxfd--) if (xports[svc_maxfd]) break; } if (svc_max_free == svc_pollfd_size / 2) { int i, j; /* * Out of space in the free list; this means * that svc_pollfd is half full. Pack things * such that svc_max_pollfd == svc_used_pollfd * and svc_pollfd_freelist is empty. */ for (i = svc_used_pollfd, j = 0; i < svc_max_pollfd && j < svc_max_free; i++) { if (svc_pollfd[i].fd == -1) continue; /* be sure to use a low-numbered slot */ while (svc_pollfd_freelist[j] >= svc_used_pollfd) j++; svc_pollfd[svc_pollfd_freelist[j++]] = svc_pollfd[i]; svc_pollfd[i].fd = -1; svc_pollfd[i].events = svc_pollfd[i].revents = 0; } svc_max_pollfd = svc_used_pollfd; svc_max_free = 0; /* could realloc if svc_pollfd_size is big */ } else { /* trim svc_max_pollfd from the end */ while (svc_max_pollfd > 0 && svc_pollfd[svc_max_pollfd - 1].fd == -1) svc_max_pollfd--; } svc_pollfd_freelist[svc_max_free++] = slot; return (1); } } return (0); /* not found, shouldn't happen */ } /* * De-activate a transport handle. */ void xprt_unregister(SVCXPRT *xprt) { int sock = xprt->xp_sock; if (xports[sock] == xprt) { xports[sock] = NULL; svc_fd_remove(sock); } } /* ********************** CALLOUT list related stuff ************* */ /* * Add a service program to the callout list. * The dispatch routine will be called when a rpc request for this * program number comes in. */ bool_t svc_register(SVCXPRT *xprt, u_long prog, u_long vers, void (*dispatch)(), int protocol) { struct svc_callout *prev; struct svc_callout *s; if ((s = svc_find(prog, vers, &prev)) != NULL) { if (s->sc_dispatch == dispatch) goto pmap_it; /* he is registering another xptr */ return (FALSE); } s = (struct svc_callout *)mem_alloc(sizeof(struct svc_callout)); if (s == NULL) { return (FALSE); } s->sc_prog = prog; s->sc_vers = vers; s->sc_dispatch = dispatch; s->sc_next = svc_head; svc_head = s; pmap_it: /* now register the information with the local binder service */ if (protocol) { return (pmap_set(prog, vers, protocol, xprt->xp_port)); } return (TRUE); } /* * Remove a service program from the callout list. */ void svc_unregister(u_long prog, u_long vers) { struct svc_callout *prev; struct svc_callout *s; if ((s = svc_find(prog, vers, &prev)) == NULL) return; if (prev == NULL) { svc_head = s->sc_next; } else { prev->sc_next = s->sc_next; } s->sc_next = NULL; mem_free((char *) s, (u_int) sizeof(struct svc_callout)); /* now unregister the information with the local binder service */ (void)pmap_unset(prog, vers); } /* * Search the callout list for a program number, return the callout * struct. */ static struct svc_callout * svc_find(u_long prog, u_long vers, struct svc_callout **prev) { struct svc_callout *s, *p; p = NULL; for (s = svc_head; s != NULL; s = s->sc_next) { if ((s->sc_prog == prog) && (s->sc_vers == vers)) goto done; p = s; } done: *prev = p; return (s); } /* ******************* REPLY GENERATION ROUTINES ************ */ /* * Send a reply to an rpc request */ bool_t svc_sendreply(SVCXPRT *xprt, xdrproc_t xdr_results, caddr_t xdr_location) { struct rpc_msg rply; rply.rm_direction = REPLY; rply.rm_reply.rp_stat = MSG_ACCEPTED; rply.acpted_rply.ar_verf = xprt->xp_verf; rply.acpted_rply.ar_stat = SUCCESS; rply.acpted_rply.ar_results.where = xdr_location; rply.acpted_rply.ar_results.proc = xdr_results; return (SVC_REPLY(xprt, &rply)); } /* * No procedure error reply */ void svcerr_noproc(SVCXPRT *xprt) { struct rpc_msg rply; rply.rm_direction = REPLY; rply.rm_reply.rp_stat = MSG_ACCEPTED; rply.acpted_rply.ar_verf = xprt->xp_verf; rply.acpted_rply.ar_stat = PROC_UNAVAIL; SVC_REPLY(xprt, &rply); } /* * Can't decode args error reply */ void svcerr_decode(SVCXPRT *xprt) { struct rpc_msg rply; rply.rm_direction = REPLY; rply.rm_reply.rp_stat = MSG_ACCEPTED; rply.acpted_rply.ar_verf = xprt->xp_verf; rply.acpted_rply.ar_stat = GARBAGE_ARGS; SVC_REPLY(xprt, &rply); } /* * Some system error */ void svcerr_systemerr(SVCXPRT *xprt) { struct rpc_msg rply; rply.rm_direction = REPLY; rply.rm_reply.rp_stat = MSG_ACCEPTED; rply.acpted_rply.ar_verf = xprt->xp_verf; rply.acpted_rply.ar_stat = SYSTEM_ERR; SVC_REPLY(xprt, &rply); } /* * Authentication error reply */ void svcerr_auth(SVCXPRT *xprt, enum auth_stat why) { struct rpc_msg rply; rply.rm_direction = REPLY; rply.rm_reply.rp_stat = MSG_DENIED; rply.rjcted_rply.rj_stat = AUTH_ERROR; rply.rjcted_rply.rj_why = why; SVC_REPLY(xprt, &rply); } /* * Auth too weak error reply */ void svcerr_weakauth(SVCXPRT *xprt) { svcerr_auth(xprt, AUTH_TOOWEAK); } /* * Program unavailable error reply */ void svcerr_noprog(SVCXPRT *xprt) { struct rpc_msg rply; rply.rm_direction = REPLY; rply.rm_reply.rp_stat = MSG_ACCEPTED; rply.acpted_rply.ar_verf = xprt->xp_verf; rply.acpted_rply.ar_stat = PROG_UNAVAIL; SVC_REPLY(xprt, &rply); } /* * Program version mismatch error reply */ void svcerr_progvers(SVCXPRT *xprt, u_long low_vers, u_long high_vers) { struct rpc_msg rply; rply.rm_direction = REPLY; rply.rm_reply.rp_stat = MSG_ACCEPTED; rply.acpted_rply.ar_verf = xprt->xp_verf; rply.acpted_rply.ar_stat = PROG_MISMATCH; rply.acpted_rply.ar_vers.low = low_vers; rply.acpted_rply.ar_vers.high = high_vers; SVC_REPLY(xprt, &rply); } /* ******************* SERVER INPUT STUFF ******************* */ /* * Get server side input from some transport. * * Statement of authentication parameters management: * This function owns and manages all authentication parameters, specifically * the "raw" parameters (msg.rm_call.cb_cred and msg.rm_call.cb_verf) and * the "cooked" credentials (rqst->rq_clntcred). * However, this function does not know the structure of the cooked * credentials, so it make the following assumptions: * a) the structure is contiguous (no pointers), and * b) the cred structure size does not exceed RQCRED_SIZE bytes. * In all events, all three parameters are freed upon exit from this routine. * The storage is trivially management on the call stack in user land, but * is mallocated in kernel land. */ void svc_getreq(int rdfds) { int bit; for (; (bit = ffs(rdfds)); rdfds ^= (1 << (bit - 1))) svc_getreq_common(bit - 1); } void svc_getreqset(fd_set *readfds) { svc_getreqset2(readfds, FD_SETSIZE); } void svc_getreqset2(fd_set *readfds, int width) { fd_mask mask, *maskp; int bit, sock; maskp = readfds->fds_bits; for (sock = 0; sock < width; sock += NFDBITS) { for (mask = *maskp++; (bit = ffs(mask)); mask ^= (1 << (bit - 1))) svc_getreq_common(sock + bit - 1); } } void svc_getreq_poll(struct pollfd *pfd, const int nready) { int i, n; for (n = nready, i = 0; n > 0; i++) { if (pfd[i].fd == -1) continue; if (pfd[i].revents != 0) n--; if ((pfd[i].revents & (POLLIN | POLLHUP)) == 0) continue; svc_getreq_common(pfd[i].fd); } } void svc_getreq_common(int fd) { enum xprt_stat stat; struct rpc_msg msg; int prog_found; u_long low_vers; u_long high_vers; struct svc_req r; SVCXPRT *xprt; char cred_area[2*MAX_AUTH_BYTES + RQCRED_SIZE]; msg.rm_call.cb_cred.oa_base = cred_area; msg.rm_call.cb_verf.oa_base = &(cred_area[MAX_AUTH_BYTES]); r.rq_clntcred = &(cred_area[2*MAX_AUTH_BYTES]); /* sock has input waiting */ xprt = xports[fd]; if (xprt == NULL) /* But do we control the fd? */ return; /* now receive msgs from xprtprt (support batch calls) */ do { if (SVC_RECV(xprt, &msg)) { /* find the exported program and call it */ struct svc_callout *s; enum auth_stat why; r.rq_xprt = xprt; r.rq_prog = msg.rm_call.cb_prog; r.rq_vers = msg.rm_call.cb_vers; r.rq_proc = msg.rm_call.cb_proc; r.rq_cred = msg.rm_call.cb_cred; /* first authenticate the message */ if ((why= _authenticate(&r, &msg)) != AUTH_OK) { svcerr_auth(xprt, why); goto call_done; } /* now match message with a registered service*/ prog_found = FALSE; low_vers = (u_long) -1; high_vers = 0; for (s = svc_head; s != NULL; s = s->sc_next) { if (s->sc_prog == r.rq_prog) { if (s->sc_vers == r.rq_vers) { (*s->sc_dispatch)(&r, xprt); goto call_done; } /* found correct version */ prog_found = TRUE; if (s->sc_vers < low_vers) low_vers = s->sc_vers; if (s->sc_vers > high_vers) high_vers = s->sc_vers; } /* found correct program */ } /* * if we got here, the program or version * is not served ... */ if (prog_found) svcerr_progvers(xprt, low_vers, high_vers); else svcerr_noprog(xprt); /* Fall through to ... */ } call_done: if ((stat = SVC_STAT(xprt)) == XPRT_DIED){ SVC_DESTROY(xprt); break; } } while (stat == XPRT_MOREREQS); }