/* $OpenBSD: armish_machdep.c,v 1.12 2008/06/08 20:56:31 miod Exp $ */ /* $NetBSD: lubbock_machdep.c,v 1.2 2003/07/15 00:25:06 lukem Exp $ */ /* * Copyright (c) 2001, 2002, 2003 Wasabi Systems, Inc. * All rights reserved. * * Written by Jason R. Thorpe for Wasabi Systems, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed for the NetBSD Project by * Wasabi Systems, Inc. * 4. The name of Wasabi Systems, Inc. may not be used to endorse * or promote products derived from this software without specific prior * written permission. * * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (c) 1997,1998 Mark Brinicombe. * Copyright (c) 1997,1998 Causality Limited. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Mark Brinicombe * for the NetBSD Project. * 4. The name of the company nor the name of the author may be used to * endorse or promote products derived from this software without specific * prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * Machine dependant functions for kernel setup for Intel IQ80321 evaluation * boards using RedBoot firmware. */ /* * DIP switches: * * S19: no-dot: set RB_KDB. enter kgdb session. * S20: no-dot: set RB_SINGLE. don't go multi user mode. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Kernel text starts 2MB in from the bottom of the kernel address space. */ #define KERNEL_TEXT_BASE (KERNEL_BASE + 0x00200000) #define KERNEL_VM_BASE (KERNEL_BASE + 0x10000000) /* * The range 0xc1000000 - 0xcfffffff is available for kernel VM space * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff */ #define KERNEL_VM_SIZE 0x20000000 /* * Address to call from cpu_reset() to reset the machine. * This is machine architecture dependant as it varies depending * on where the ROM appears when you turn the MMU off. */ u_int cpu_reset_address = 0; /* Define various stack sizes in pages */ #define IRQ_STACK_SIZE 1 #define ABT_STACK_SIZE 1 #ifdef IPKDB #define UND_STACK_SIZE 2 #else #define UND_STACK_SIZE 1 #endif BootConfig bootconfig; /* Boot config storage */ char *boot_args = NULL; char *boot_file = NULL; paddr_t physical_start; paddr_t physical_freestart; paddr_t physical_freeend; paddr_t physical_end; u_int free_pages; paddr_t pagetables_start; int physmem = 0; /*int debug_flags;*/ #ifndef PMAP_STATIC_L1S int max_processes = 64; /* Default number */ #endif /* !PMAP_STATIC_L1S */ /* Physical and virtual addresses for some global pages */ pv_addr_t systempage; pv_addr_t irqstack; pv_addr_t undstack; pv_addr_t abtstack; extern pv_addr_t kernelstack; pv_addr_t minidataclean; paddr_t msgbufphys; extern u_int data_abort_handler_address; extern u_int prefetch_abort_handler_address; extern u_int undefined_handler_address; #ifdef PMAP_DEBUG extern int pmap_debug_level; #endif #define KERNEL_PT_SYS 0 /* L2 table for mapping zero page */ #define KERNEL_PT_KERNEL 1 /* L2 table for mapping kernel */ #define KERNEL_PT_KERNEL_NUM 32 /* L2 table for mapping i80312 */ //#define KERNEL_PT_IOPXS (KERNEL_PT_KERNEL + KERNEL_PT_KERNEL_NUM) /* L2 tables for mapping kernel VM */ //#define KERNEL_PT_VMDATA (KERNEL_PT_IOPXS + 1) #define KERNEL_PT_VMDATA (KERNEL_PT_KERNEL + KERNEL_PT_KERNEL_NUM) #define KERNEL_PT_VMDATA_NUM 8 /* start with 16MB of KVM */ #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM) pv_addr_t kernel_pt_table[NUM_KERNEL_PTS]; extern struct user *proc0paddr; /* Prototypes */ #define BOOT_STRING_MAGIC 0x4f425344 char bootargs[MAX_BOOT_STRING]; void process_kernel_args(char *); void consinit(void); #include "com.h" #if NCOM > 0 #include #include #endif #ifndef CONSPEED #define CONSPEED B115200 /* What RedBoot uses */ #endif #ifndef CONMODE #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8 | CLOCAL) /* 8N1 */ #endif int comcnspeed = CONSPEED; int comcnmode = CONMODE; /* * void boot(int howto, char *bootstr) * * Reboots the system * * Deal with any syncing, unmounting, dumping and shutdown hooks, * then reset the CPU. */ void board_reset(void); void board_powerdown(void); void boot(int howto) { if (cold) { /* * If the system is cold, just halt, unless the user * explicitely asked for reboot. */ if ((howto & RB_USERREQ) == 0) howto |= RB_HALT; goto haltsys; } /* * If RB_NOSYNC was not specified sync the discs. * Note: Unless cold is set to 1 here, syslogd will die during the * unmount. It looks like syslogd is getting woken up only to find * that it cannot page part of the binary in as the filesystem has * been unmounted. */ if (!(howto & RB_NOSYNC)) bootsync(howto); /* Say NO to interrupts */ splhigh(); /* Do a dump if requested. */ if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP) dumpsys(); haltsys: doshutdownhooks(); /* Make sure IRQ's are disabled */ IRQdisable; if (howto & RB_HALT) { if (howto & RB_POWERDOWN) { board_powerdown(); printf("WARNING: powerdown failed!\n"); } printf("The operating system has halted.\n"); printf("Please press any key to reboot.\n\n"); cnpollc(1); cngetc(); cnpollc(0); } printf("rebooting...\n"); board_reset(); cpu_reset(); printf("reboot failed; spinning\n"); while(1); /*NOTREACHED*/ } /* * Mapping table for core kernel memory. These areas are mapped in * init time at fixed virtual address with section mappings. */ const struct pmap_devmap iq80321_devmap[] = { /* * Map the on-board devices VA == PA so that we can access them * with the MMU on or off. */ { IQ80321_OBIO_BASE, IQ80321_OBIO_BASE, 0x00100000 /* IQ80321_OBIO_SIZE, */, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, }, {0, 0, 0, 0, 0} }; /* * u_int initarm(...) * * Initial entry point on startup. This gets called before main() is * entered. * It should be responsible for setting up everything that must be * in place when main is called. * This includes * Taking a copy of the boot configuration structure. * Initialising the physical console so characters can be printed. * Setting up page tables for the kernel * Relocating the kernel to the bottom of physical memory */ u_int initarm(void *arg) { extern vaddr_t xscale_cache_clean_addr; extern cpu_kcore_hdr_t cpu_kcore_hdr; int loop; int loop1; u_int l1pagetable; pv_addr_t kernel_l1pt; paddr_t memstart; psize_t memsize; extern u_int32_t esym; /* &_end if no symbols are loaded */ #ifdef DIAGNOSTIC extern vsize_t xscale_minidata_clean_size; /* used in KASSERT */ #endif /* setup a serial console for very early boot */ consinit(); /* * Heads up ... Setup the CPU / MMU / TLB functions */ if (set_cpufuncs()) panic("cpu not recognized!"); /* * Examine the boot args string for options we need to know about * now. */ /* XXX should really be done after setting up the console, but we * XXX need to parse the console selection flags right now. */ process_kernel_args((char *)0xa0200000 - MAX_BOOT_STRING - 1); /* Calibrate the delay loop. */ #if 1 i80321_calibrate_delay(); #endif /* Talk to the user */ printf("\nOpenBSD/armish booting ...\n"); /* * Reset the secondary PCI bus. RedBoot doesn't stop devices * on the PCI bus before handing us control, so we have to * do this. * * XXX This is arguably a bug in RedBoot, and doing this reset * XXX could be problematic in the future if we encounter an * XXX application where the PPB in the i80312 is used as a * XXX PPB. */ //#define VERBOSE_INIT_ARM /* * Fetch the SDRAM start/size from the i80312 SDRAM configuration * registers. */ i80321_sdram_bounds(&obio_bs_tag, VERDE_PMMR_BASE + VERDE_MCU_BASE, &memstart, &memsize); #define DEBUG #ifdef DEBUG printf("initarm: Configuring system ...\n"); #endif /* Fake bootconfig structure for the benefit of pmap.c */ /* XXX must make the memory description h/w independant */ bootconfig.dramblocks = 1; bootconfig.dram[0].address = memstart; bootconfig.dram[0].pages = memsize / PAGE_SIZE; /* * Set up the variables that define the availablilty of * physical memory. For now, we're going to set * physical_freestart to 0xa0200000 (where the kernel * was loaded), and allocate the memory we need downwards. * If we get too close to the page tables that RedBoot * set up, we will panic. We will update physical_freestart * and physical_freeend later to reflect what pmap_bootstrap() * wants to see. * * XXX pmap_bootstrap() needs an enema. */ physical_start = bootconfig.dram[0].address; physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE); physical_freestart = 0xa0009000UL; physical_freeend = 0xa0200000UL; physmem = (physical_end - physical_start) / PAGE_SIZE; #ifdef DEBUG /* Tell the user about the memory */ printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem, physical_start, physical_end - 1); #endif /* * Okay, the kernel starts 2MB in from the bottom of physical * memory. We are going to allocate our bootstrap pages downwards * from there. * * We need to allocate some fixed page tables to get the kernel * going. We allocate one page directory and a number of page * tables and store the physical addresses in the kernel_pt_table * array. * * The kernel page directory must be on a 16K boundary. The page * tables must be on 4K boundaries. What we do is allocate the * page directory on the first 16K boundary that we encounter, and * the page tables on 4K boundaries otherwise. Since we allocate * at least 3 L2 page tables, we are guaranteed to encounter at * least one 16K aligned region. */ #ifdef VERBOSE_INIT_ARM printf("Allocating page tables\n"); #endif free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE; #ifdef VERBOSE_INIT_ARM printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n", physical_freestart, free_pages, free_pages); #endif /* Define a macro to simplify memory allocation */ #define valloc_pages(var, np) \ alloc_pages((var).pv_pa, (np)); \ (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start; #define alloc_pages(var, np) \ physical_freeend -= ((np) * PAGE_SIZE); \ if (physical_freeend < physical_freestart) \ panic("initarm: out of memory"); \ (var) = physical_freeend; \ free_pages -= (np); \ memset((char *)(var), 0, ((np) * PAGE_SIZE)); loop1 = 0; kernel_l1pt.pv_pa = 0; for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) { /* Are we 16KB aligned for an L1 ? */ if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0 && kernel_l1pt.pv_pa == 0) { valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE); } else { valloc_pages(kernel_pt_table[loop1], L2_TABLE_SIZE / PAGE_SIZE); ++loop1; } } /* This should never be able to happen but better confirm that. */ if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0) panic("initarm: Failed to align the kernel page directory"); /* * Allocate a page for the system page mapped to V0x00000000 * This page will just contain the system vectors and can be * shared by all processes. */ alloc_pages(systempage.pv_pa, 1); /* Allocate stacks for all modes */ valloc_pages(irqstack, IRQ_STACK_SIZE); valloc_pages(abtstack, ABT_STACK_SIZE); valloc_pages(undstack, UND_STACK_SIZE); valloc_pages(kernelstack, UPAGES); /* Allocate enough pages for cleaning the Mini-Data cache. */ KASSERT(xscale_minidata_clean_size <= PAGE_SIZE); valloc_pages(minidataclean, 1); #ifdef VERBOSE_INIT_ARM printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa, irqstack.pv_va); printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa, abtstack.pv_va); printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa, undstack.pv_va); printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa, kernelstack.pv_va); #endif /* * XXX Defer this to later so that we can reclaim the memory * XXX used by the RedBoot page tables. */ alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE); /* * Ok we have allocated physical pages for the primary kernel * page tables */ #ifdef VERBOSE_INIT_ARM printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa); #endif /* * Now we start construction of the L1 page table * We start by mapping the L2 page tables into the L1. * This means that we can replace L1 mappings later on if necessary */ l1pagetable = kernel_l1pt.pv_pa; #ifdef HIGH_VECT /* Map the L2 pages tables in the L1 page table */ pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH & ~(0x00400000 - 1), &kernel_pt_table[KERNEL_PT_SYS]); #else /* Map the L2 pages tables in the L1 page table */ pmap_link_l2pt(l1pagetable, 0x00000000, &kernel_pt_table[KERNEL_PT_SYS]); #endif for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++) pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000, &kernel_pt_table[KERNEL_PT_KERNEL + loop]); for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++) pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000, &kernel_pt_table[KERNEL_PT_VMDATA + loop]); #if 0 pmap_link_l2pt(l1pagetable, IQ80321_IOPXS_VBASE, &kernel_pt_table[KERNEL_PT_IOPXS]); #endif /* update the top of the kernel VM */ pmap_curmaxkvaddr = KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000); #ifdef VERBOSE_INIT_ARM printf("Mapping kernel\n"); #endif /* Now we fill in the L2 pagetable for the kernel static code/data * and the symbol table. */ { extern char etext[]; #ifdef VERBOSE_INIT_ARM extern char _end[]; #endif size_t textsize = (u_int32_t) etext - KERNEL_TEXT_BASE; size_t totalsize = esym - KERNEL_TEXT_BASE; u_int logical; #ifdef VERBOSE_INIT_ARM printf("kernelsize text %x total %x end %xesym %x\n", textsize, totalsize, _end, esym); #endif textsize = round_page(textsize); totalsize = round_page(totalsize); logical = 0x00200000; /* offset of kernel in RAM */ /* Update dump information */ cpu_kcore_hdr.kernelbase = KERNEL_BASE; cpu_kcore_hdr.kerneloffs = logical; cpu_kcore_hdr.staticsize = totalsize; logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, physical_start + logical, textsize, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, physical_start + logical, totalsize - textsize, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); } #ifdef VERBOSE_INIT_ARM printf("Constructing L2 page tables\n"); #endif /* Map the stack pages */ pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa, IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa, ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa, UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa, UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa, L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE); for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) { pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va, kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); } /* Map the Mini-Data cache clean area. */ xscale_setup_minidata(l1pagetable, minidataclean.pv_va, minidataclean.pv_pa); /* Map the vector page. */ #ifdef HIGH_VECT pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); #else pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); #endif pmap_devmap_bootstrap(l1pagetable, iq80321_devmap); /* * Give the XScale global cache clean code an appropriately * sized chunk of unmapped VA space starting at 0xff000000 * (our device mappings end before this address). */ xscale_cache_clean_addr = 0xff000000U; /* * Now we have the real page tables in place so we can switch to them. * Once this is done we will be running with the REAL kernel page * tables. */ /* * Update the physical_freestart/physical_freeend/free_pages * variables. */ { physical_freestart = physical_start - KERNEL_BASE + round_page(esym); physical_freeend = physical_end; free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE; } #ifdef VERBOSE_INIT_ARM printf("physical_freestart %x end %x\n", physical_freestart, physical_freeend); #endif /* be a client to all domains */ cpu_domains(0x55555555); /* Switch tables */ #ifdef VERBOSE_INIT_ARM printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n", physical_freestart, free_pages, free_pages); printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa); #endif cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT); setttb(kernel_l1pt.pv_pa); cpu_tlb_flushID(); cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)); /* * Moved from cpu_startup() as data_abort_handler() references * this during uvm init */ proc0paddr = (struct user *)kernelstack.pv_va; proc0.p_addr = proc0paddr; #ifdef VERBOSE_INIT_ARM printf("bootstrap done.\n"); #endif #ifdef HIGH_VECT arm32_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL); #else arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL); #endif /* * Pages were allocated during the secondary bootstrap for the * stacks for different CPU modes. * We must now set the r13 registers in the different CPU modes to * point to these stacks. * Since the ARM stacks use STMFD etc. we must set r13 to the top end * of the stack memory. */ #ifdef VERBOSE_INIT_ARM printf("init subsystems: stacks "); #endif set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE); set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE); set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE); /* * Well we should set a data abort handler. * Once things get going this will change as we will need a proper * handler. * Until then we will use a handler that just panics but tells us * why. * Initialisation of the vectors will just panic on a data abort. * This just fills in a slightly better one. */ #ifdef VERBOSE_INIT_ARM printf("vectors "); #endif data_abort_handler_address = (u_int)data_abort_handler; prefetch_abort_handler_address = (u_int)prefetch_abort_handler; undefined_handler_address = (u_int)undefinedinstruction_bounce; /* Initialise the undefined instruction handlers */ #ifdef VERBOSE_INIT_ARM printf("undefined "); #endif undefined_init(); /* Load memory into UVM. */ #ifdef VERBOSE_INIT_ARM printf("page "); #endif uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */ uvm_page_physload(atop(physical_freestart), atop(physical_freeend), atop(physical_freestart), atop(physical_freeend), VM_FREELIST_DEFAULT); /* Boot strap pmap telling it where the kernel page table is */ #ifdef VERBOSE_INIT_ARM printf("pmap "); #endif pmap_bootstrap((pd_entry_t *)kernel_l1pt.pv_va, KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE); /* Update dump information */ cpu_kcore_hdr.pmap_kernel_l1 = (u_int32_t)pmap_kernel()->pm_l1; cpu_kcore_hdr.pmap_kernel_l2 = (u_int32_t)&(pmap_kernel()->pm_l2); /* Setup the IRQ system */ #ifdef VERBOSE_INIT_ARM printf("irq "); #endif i80321intc_intr_init(); #ifdef VERBOSE_INIT_ARM printf("done.\n"); #endif #ifdef DDB db_machine_init(); /* Firmware doesn't load symbols. */ ddb_init(); if (boothowto & RB_KDB) Debugger(); #endif /* We return the new stack pointer address */ return(kernelstack.pv_va + USPACE_SVC_STACK_TOP); } void process_kernel_args(char *args) { char *cp = args; if (cp == NULL || *(int *)cp != BOOT_STRING_MAGIC) { boothowto = RB_AUTOBOOT; return; } /* Eat the cookie */ *(int *)cp = 0; cp += sizeof(int); boothowto = 0; /* Make a local copy of the bootargs */ strncpy(bootargs, cp, MAX_BOOT_STRING - sizeof(int)); cp = bootargs; boot_file = bootargs; /* Skip the kernel image filename */ while (*cp != ' ' && *cp != 0) ++cp; if (*cp != 0) *cp++ = 0; while (*cp == ' ') ++cp; boot_args = cp; #if 0 printf("bootfile: %s\n", boot_file); printf("bootargs: %s\n", boot_args); #endif /* Setup pointer to boot flags */ while (*cp != '-') if (*cp++ == '\0') return; for (;*++cp;) { int fl; fl = 0; switch(*cp) { case 'a': fl |= RB_ASKNAME; break; case 'c': fl |= RB_CONFIG; break; case 'd': fl |= RB_KDB; break; case 's': fl |= RB_SINGLE; break; default: printf("unknown option `%c'\n", *cp); break; } boothowto |= fl; } } void consinit(void) { static const bus_addr_t comcnaddrs[] = { IQ80321_UART1 /* com0 */ }; static int consinit_called; if (consinit_called != 0) return; consinit_called = 1; /* * Console devices are mapped VA==PA. Our devmap reflects * this, so register it now so drivers can map the console * device. */ pmap_devmap_register(iq80321_devmap); #if NCOM > 0 if (comcnattach(&obio_bs_tag, comcnaddrs[0], comcnspeed, COM_FREQ, comcnmode)) panic("can't init serial console @%lx", comcnaddrs[0]); comdefaultrate = comcnspeed; #else panic("serial console @%lx not configured", comcnaddrs[0]); #endif } void board_startup(void) { if (boothowto & RB_CONFIG) { #ifdef BOOT_CONFIG user_config(); #else printf("kernel does not support -c; continuing..\n"); #endif } }