/* $OpenBSD: ext2fs_vfsops.c,v 1.49 2007/10/06 23:50:55 krw Exp $ */ /* $NetBSD: ext2fs_vfsops.c,v 1.1 1997/06/11 09:34:07 bouyer Exp $ */ /* * Copyright (c) 1997 Manuel Bouyer. * Copyright (c) 1989, 1991, 1993, 1994 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)ffs_vfsops.c 8.14 (Berkeley) 11/28/94 * Modified for ext2fs by Manuel Bouyer. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include extern struct lock ufs_hashlock; int ext2fs_sbupdate(struct ufsmount *, int); static int ext2fs_checksb(struct ext2fs *, int); extern struct vnodeopv_desc ext2fs_vnodeop_opv_desc; extern struct vnodeopv_desc ext2fs_specop_opv_desc; #ifdef FIFO extern struct vnodeopv_desc ext2fs_fifoop_opv_desc; #endif struct vnodeopv_desc *ext2fs_vnodeopv_descs[] = { &ext2fs_vnodeop_opv_desc, &ext2fs_specop_opv_desc, #ifdef FIFO &ext2fs_fifoop_opv_desc, #endif NULL, }; const struct vfsops ext2fs_vfsops = { ext2fs_mount, ufs_start, ext2fs_unmount, ufs_root, ufs_quotactl, ext2fs_statfs, ext2fs_sync, ext2fs_vget, ext2fs_fhtovp, ext2fs_vptofh, ext2fs_init, ext2fs_sysctl, ufs_check_export }; struct pool ext2fs_inode_pool; struct pool ext2fs_dinode_pool; extern u_long ext2gennumber; int ext2fs_init(struct vfsconf *vfsp) { pool_init(&ext2fs_inode_pool, sizeof(struct inode), 0, 0, 0, "ext2inopl", &pool_allocator_nointr); pool_init(&ext2fs_dinode_pool, sizeof(struct ext2fs_dinode), 0, 0, 0, "ext2dinopl", &pool_allocator_nointr); return (ufs_init(vfsp)); } /* * Called by main() when ext2fs is going to be mounted as root. * * Name is updated by mount(8) after booting. */ #define ROOTNAME "root_device" int ext2fs_mountroot(void) { struct m_ext2fs *fs; struct mount *mp; struct proc *p = curproc; /* XXX */ struct ufsmount *ump; int error; /* * Get vnodes for swapdev and rootdev. */ if (bdevvp(swapdev, &swapdev_vp) || bdevvp(rootdev, &rootvp)) panic("ext2fs_mountroot: can't setup bdevvp's"); if ((error = vfs_rootmountalloc("ext2fs", "root_device", &mp)) != 0) { vrele(rootvp); return (error); } if ((error = ext2fs_mountfs(rootvp, mp, p)) != 0) { mp->mnt_vfc->vfc_refcount--; vfs_unbusy(mp); free(mp, M_MOUNT); vrele(rootvp); return (error); } CIRCLEQ_INSERT_TAIL(&mountlist, mp, mnt_list); ump = VFSTOUFS(mp); fs = ump->um_e2fs; bzero(fs->e2fs_fsmnt, sizeof(fs->e2fs_fsmnt)); (void) copystr(mp->mnt_stat.f_mntonname, fs->e2fs_fsmnt, sizeof(fs->e2fs_fsmnt) - 1, 0); if (fs->e2fs.e2fs_rev > E2FS_REV0) { bzero(fs->e2fs.e2fs_fsmnt, sizeof(fs->e2fs.e2fs_fsmnt)); (void) copystr(mp->mnt_stat.f_mntonname, fs->e2fs.e2fs_fsmnt, sizeof(fs->e2fs.e2fs_fsmnt) - 1, 0); } (void)ext2fs_statfs(mp, &mp->mnt_stat, p); vfs_unbusy(mp); inittodr(fs->e2fs.e2fs_wtime); return (0); } /* * VFS Operations. * * mount system call */ int ext2fs_mount(struct mount *mp, const char *path, void *data, struct nameidata *ndp, struct proc *p) { struct vnode *devvp; struct ufs_args args; struct ufsmount *ump = NULL; struct m_ext2fs *fs; size_t size; int error, flags; mode_t accessmode; error = copyin(data, (caddr_t)&args, sizeof (struct ufs_args)); if (error) return (error); /* * If updating, check whether changing from read-only to * read/write; if there is no device name, that's all we do. */ if (mp->mnt_flag & MNT_UPDATE) { ump = VFSTOUFS(mp); fs = ump->um_e2fs; if (fs->e2fs_ronly == 0 && (mp->mnt_flag & MNT_RDONLY)) { flags = WRITECLOSE; if (mp->mnt_flag & MNT_FORCE) flags |= FORCECLOSE; error = ext2fs_flushfiles(mp, flags, p); if (error == 0 && ext2fs_cgupdate(ump, MNT_WAIT) == 0 && (fs->e2fs.e2fs_state & E2FS_ERRORS) == 0) { fs->e2fs.e2fs_state = E2FS_ISCLEAN; (void) ext2fs_sbupdate(ump, MNT_WAIT); } if (error) return (error); fs->e2fs_ronly = 1; } if (mp->mnt_flag & MNT_RELOAD) { error = ext2fs_reload(mp, ndp->ni_cnd.cn_cred, p); if (error) return (error); } if (fs->e2fs_ronly && (mp->mnt_flag & MNT_WANTRDWR)) { /* * If upgrade to read-write by non-root, then verify * that user has necessary permissions on the device. */ if (p->p_ucred->cr_uid != 0) { devvp = ump->um_devvp; vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY, p); error = VOP_ACCESS(devvp, VREAD | VWRITE, p->p_ucred, p); if (error) { VOP_UNLOCK(devvp, 0, p); return (error); } VOP_UNLOCK(devvp, 0, p); } fs->e2fs_ronly = 0; if (fs->e2fs.e2fs_state == E2FS_ISCLEAN) fs->e2fs.e2fs_state = 0; else fs->e2fs.e2fs_state = E2FS_ERRORS; fs->e2fs_fmod = 1; } if (args.fspec == 0) { /* * Process export requests. */ return (vfs_export(mp, &ump->um_export, &args.export_info)); } } /* * Not an update, or updating the name: look up the name * and verify that it refers to a sensible block device. */ NDINIT(ndp, LOOKUP, FOLLOW, UIO_USERSPACE, args.fspec, p); if ((error = namei(ndp)) != 0) return (error); devvp = ndp->ni_vp; if (devvp->v_type != VBLK) { vrele(devvp); return (ENOTBLK); } if (major(devvp->v_rdev) >= nblkdev) { vrele(devvp); return (ENXIO); } /* * If mount by non-root, then verify that user has necessary * permissions on the device. */ if (p->p_ucred->cr_uid != 0) { accessmode = VREAD; if ((mp->mnt_flag & MNT_RDONLY) == 0) accessmode |= VWRITE; vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY, p); error = VOP_ACCESS(devvp, accessmode, p->p_ucred, p); if (error) { vput(devvp); return (error); } VOP_UNLOCK(devvp, 0, p); } if ((mp->mnt_flag & MNT_UPDATE) == 0) error = ext2fs_mountfs(devvp, mp, p); else { if (devvp != ump->um_devvp) error = EINVAL; /* XXX needs translation */ else vrele(devvp); } if (error) { vrele(devvp); return (error); } ump = VFSTOUFS(mp); fs = ump->um_e2fs; (void) copyinstr(path, fs->e2fs_fsmnt, sizeof(fs->e2fs_fsmnt) - 1, &size); bzero(fs->e2fs_fsmnt + size, sizeof(fs->e2fs_fsmnt) - size); if (fs->e2fs.e2fs_rev > E2FS_REV0) { (void) copystr(mp->mnt_stat.f_mntonname, fs->e2fs.e2fs_fsmnt, sizeof(fs->e2fs.e2fs_fsmnt) - 1, &size); bzero(fs->e2fs.e2fs_fsmnt, sizeof(fs->e2fs.e2fs_fsmnt) - size); } bcopy(fs->e2fs_fsmnt, mp->mnt_stat.f_mntonname, MNAMELEN); (void) copyinstr(args.fspec, mp->mnt_stat.f_mntfromname, MNAMELEN - 1, &size); bzero(mp->mnt_stat.f_mntfromname + size, MNAMELEN - size); if (fs->e2fs_fmod != 0) { /* XXX */ fs->e2fs_fmod = 0; if (fs->e2fs.e2fs_state == 0) fs->e2fs.e2fs_wtime = time_second; else printf("%s: file system not clean; please fsck(8)\n", mp->mnt_stat.f_mntfromname); (void) ext2fs_cgupdate(ump, MNT_WAIT); } return (0); } int ext2fs_reload_vnode(struct vnode *, void *args); struct ext2fs_reload_args { struct m_ext2fs *fs; struct proc *p; struct ucred *cred; struct vnode *devvp; }; int ext2fs_reload_vnode(struct vnode *vp, void *args) { struct ext2fs_reload_args *era = args; struct buf *bp; struct inode *ip; int error; caddr_t cp; /* * Step 4: invalidate all inactive vnodes. */ if (vp->v_usecount == 0) { vgonel(vp, era->p); return (0); } /* * Step 5: invalidate all cached file data. */ if (vget(vp, LK_EXCLUSIVE, era->p)) return (0); if (vinvalbuf(vp, 0, era->cred, era->p, 0, 0)) panic("ext2fs_reload: dirty2"); /* * Step 6: re-read inode data for all active vnodes. */ ip = VTOI(vp); error = bread(era->devvp, fsbtodb(era->fs, ino_to_fsba(era->fs, ip->i_number)), (int)era->fs->e2fs_bsize, NOCRED, &bp); if (error) { vput(vp); return (error); } cp = (caddr_t)bp->b_data + (ino_to_fsbo(era->fs, ip->i_number) * EXT2_DINODE_SIZE); e2fs_iload((struct ext2fs_dinode *)cp, ip->i_e2din); brelse(bp); vput(vp); return (0); } /* * Reload all incore data for a filesystem (used after running fsck on * the root filesystem and finding things to fix). The filesystem must * be mounted read-only. * * Things to do to update the mount: * 1) invalidate all cached meta-data. * 2) re-read superblock from disk. * 3) re-read summary information from disk. * 4) invalidate all inactive vnodes. * 5) invalidate all cached file data. * 6) re-read inode data for all active vnodes. */ int ext2fs_reload(struct mount *mountp, struct ucred *cred, struct proc *p) { struct vnode *devvp; struct buf *bp; struct m_ext2fs *fs; struct ext2fs *newfs; struct partinfo dpart; int i, size, error; struct ext2fs_reload_args era; if ((mountp->mnt_flag & MNT_RDONLY) == 0) return (EINVAL); /* * Step 1: invalidate all cached meta-data. */ devvp = VFSTOUFS(mountp)->um_devvp; if (vinvalbuf(devvp, 0, cred, p, 0, 0)) panic("ext2fs_reload: dirty1"); /* * Step 2: re-read superblock from disk. */ if (VOP_IOCTL(devvp, DIOCGPART, (caddr_t)&dpart, FREAD, NOCRED, p) != 0) size = DEV_BSIZE; else size = dpart.disklab->d_secsize; error = bread(devvp, (int32_t)(SBOFF / size), SBSIZE, NOCRED, &bp); if (error) { brelse(bp); return (error); } newfs = (struct ext2fs *)bp->b_data; error = ext2fs_checksb(newfs, (mountp->mnt_flag & MNT_RDONLY) != 0); if (error) { brelse(bp); return (error); } fs = VFSTOUFS(mountp)->um_e2fs; /* * copy in new superblock, and compute in-memory values */ e2fs_sbload(newfs, &fs->e2fs); fs->e2fs_ncg = howmany(fs->e2fs.e2fs_bcount - fs->e2fs.e2fs_first_dblock, fs->e2fs.e2fs_bpg); /* XXX assume hw bsize = 512 */ fs->e2fs_fsbtodb = fs->e2fs.e2fs_log_bsize + 1; fs->e2fs_bsize = 1024 << fs->e2fs.e2fs_log_bsize; fs->e2fs_bshift = LOG_MINBSIZE + fs->e2fs.e2fs_log_bsize; fs->e2fs_qbmask = fs->e2fs_bsize - 1; fs->e2fs_bmask = ~fs->e2fs_qbmask; fs->e2fs_ngdb = howmany(fs->e2fs_ncg, fs->e2fs_bsize / sizeof(struct ext2_gd)); fs->e2fs_ipb = fs->e2fs_bsize / EXT2_DINODE_SIZE; fs->e2fs_itpg = fs->e2fs.e2fs_ipg/fs->e2fs_ipb; /* * Step 3: re-read summary information from disk. */ for (i=0; i < fs->e2fs_ngdb; i++) { error = bread(devvp , fsbtodb(fs, ((fs->e2fs_bsize>1024)? 0 : 1) + i + 1), fs->e2fs_bsize, NOCRED, &bp); if (error) { brelse(bp); return (error); } e2fs_cgload((struct ext2_gd*)bp->b_data, &fs->e2fs_gd[i* fs->e2fs_bsize / sizeof(struct ext2_gd)], fs->e2fs_bsize); brelse(bp); } era.p = p; era.cred = cred; era.fs = fs; era.devvp = devvp; error = vfs_mount_foreach_vnode(mountp, ext2fs_reload_vnode, &era); return (error); } /* * Common code for mount and mountroot */ int ext2fs_mountfs(struct vnode *devvp, struct mount *mp, struct proc *p) { struct ufsmount *ump; struct buf *bp; struct ext2fs *fs; struct m_ext2fs *m_fs; dev_t dev; struct partinfo dpart; int error, i, size, ronly; struct ucred *cred; dev = devvp->v_rdev; cred = p ? p->p_ucred : NOCRED; /* * Disallow multiple mounts of the same device. * Disallow mounting of a device that is currently in use * (except for root, which might share swap device for miniroot). * Flush out any old buffers remaining from a previous use. */ if ((error = vfs_mountedon(devvp)) != 0) return (error); if (vcount(devvp) > 1 && devvp != rootvp) return (EBUSY); if ((error = vinvalbuf(devvp, V_SAVE, cred, p, 0, 0)) != 0) return (error); ronly = (mp->mnt_flag & MNT_RDONLY) != 0; error = VOP_OPEN(devvp, ronly ? FREAD : FREAD|FWRITE, FSCRED, p); if (error) return (error); if (VOP_IOCTL(devvp, DIOCGPART, (caddr_t)&dpart, FREAD, cred, p) != 0) size = DEV_BSIZE; else size = dpart.disklab->d_secsize; bp = NULL; ump = NULL; #ifdef DEBUG_EXT2 printf("sb size: %d ino size %d\n", sizeof(struct ext2fs), EXT2_DINODE_SIZE); #endif error = bread(devvp, (SBOFF / DEV_BSIZE), SBSIZE, cred, &bp); if (error) goto out; fs = (struct ext2fs *)bp->b_data; error = ext2fs_checksb(fs, ronly); if (error) goto out; ump = malloc(sizeof *ump, M_UFSMNT, M_WAITOK | M_ZERO); ump->um_e2fs = malloc(sizeof(struct m_ext2fs), M_UFSMNT, M_WAITOK | M_ZERO); e2fs_sbload((struct ext2fs*)bp->b_data, &ump->um_e2fs->e2fs); brelse(bp); bp = NULL; m_fs = ump->um_e2fs; m_fs->e2fs_ronly = ronly; ump->um_fstype = UM_EXT2FS; if (ronly == 0) { if (m_fs->e2fs.e2fs_state == E2FS_ISCLEAN) m_fs->e2fs.e2fs_state = 0; else m_fs->e2fs.e2fs_state = E2FS_ERRORS; m_fs->e2fs_fmod = 1; } /* compute dynamic sb infos */ m_fs->e2fs_ncg = howmany(m_fs->e2fs.e2fs_bcount - m_fs->e2fs.e2fs_first_dblock, m_fs->e2fs.e2fs_bpg); /* XXX assume hw bsize = 512 */ m_fs->e2fs_fsbtodb = m_fs->e2fs.e2fs_log_bsize + 1; m_fs->e2fs_bsize = 1024 << m_fs->e2fs.e2fs_log_bsize; m_fs->e2fs_bshift = LOG_MINBSIZE + m_fs->e2fs.e2fs_log_bsize; m_fs->e2fs_qbmask = m_fs->e2fs_bsize - 1; m_fs->e2fs_bmask = ~m_fs->e2fs_qbmask; m_fs->e2fs_ngdb = howmany(m_fs->e2fs_ncg, m_fs->e2fs_bsize / sizeof(struct ext2_gd)); m_fs->e2fs_ipb = m_fs->e2fs_bsize / EXT2_DINODE_SIZE; m_fs->e2fs_itpg = m_fs->e2fs.e2fs_ipg/m_fs->e2fs_ipb; m_fs->e2fs_gd = malloc(m_fs->e2fs_ngdb * m_fs->e2fs_bsize, M_UFSMNT, M_WAITOK); for (i=0; i < m_fs->e2fs_ngdb; i++) { error = bread(devvp , fsbtodb(m_fs, ((m_fs->e2fs_bsize>1024)? 0 : 1) + i + 1), m_fs->e2fs_bsize, NOCRED, &bp); if (error) { free(m_fs->e2fs_gd, M_UFSMNT); goto out; } e2fs_cgload((struct ext2_gd*)bp->b_data, &m_fs->e2fs_gd[ i * m_fs->e2fs_bsize / sizeof(struct ext2_gd)], m_fs->e2fs_bsize); brelse(bp); bp = NULL; } mp->mnt_data = (qaddr_t)ump; mp->mnt_stat.f_fsid.val[0] = (long)dev; mp->mnt_stat.f_fsid.val[1] = mp->mnt_vfc->vfc_typenum; mp->mnt_maxsymlinklen = EXT2_MAXSYMLINKLEN; mp->mnt_flag |= MNT_LOCAL; ump->um_mountp = mp; ump->um_dev = dev; ump->um_devvp = devvp; ump->um_nindir = NINDIR(m_fs); ump->um_bptrtodb = m_fs->e2fs_fsbtodb; ump->um_seqinc = 1; /* no frags */ devvp->v_specmountpoint = mp; return (0); out: if (bp) brelse(bp); vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY, p); (void)VOP_CLOSE(devvp, ronly ? FREAD : FREAD|FWRITE, cred, p); VOP_UNLOCK(devvp, 0, p); if (ump) { free(ump->um_e2fs, M_UFSMNT); free(ump, M_UFSMNT); mp->mnt_data = (qaddr_t)0; } return (error); } /* * unmount system call */ int ext2fs_unmount(struct mount *mp, int mntflags, struct proc *p) { struct ufsmount *ump; struct m_ext2fs *fs; int error, flags; flags = 0; if (mntflags & MNT_FORCE) flags |= FORCECLOSE; if ((error = ext2fs_flushfiles(mp, flags, p)) != 0) return (error); ump = VFSTOUFS(mp); fs = ump->um_e2fs; if (fs->e2fs_ronly == 0 && ext2fs_cgupdate(ump, MNT_WAIT) == 0 && (fs->e2fs.e2fs_state & E2FS_ERRORS) == 0) { fs->e2fs.e2fs_state = E2FS_ISCLEAN; (void) ext2fs_sbupdate(ump, MNT_WAIT); } if (ump->um_devvp->v_type != VBAD) ump->um_devvp->v_specmountpoint = NULL; vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY, p); error = VOP_CLOSE(ump->um_devvp, fs->e2fs_ronly ? FREAD : FREAD|FWRITE, NOCRED, p); vput(ump->um_devvp); free(fs->e2fs_gd, M_UFSMNT); free(fs, M_UFSMNT); free(ump, M_UFSMNT); mp->mnt_data = (qaddr_t)0; mp->mnt_flag &= ~MNT_LOCAL; return (error); } /* * Flush out all the files in a filesystem. */ int ext2fs_flushfiles(struct mount *mp, int flags, struct proc *p) { struct ufsmount *ump; int error; ump = VFSTOUFS(mp); /* * Flush all the files. */ if ((error = vflush(mp, NULL, flags)) != 0) return (error); /* * Flush filesystem metadata. */ vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY, p); error = VOP_FSYNC(ump->um_devvp, p->p_ucred, MNT_WAIT, p); VOP_UNLOCK(ump->um_devvp, 0, p); return (error); } /* * Get file system statistics. */ int ext2fs_statfs(struct mount *mp, struct statfs *sbp, struct proc *p) { struct ufsmount *ump; struct m_ext2fs *fs; u_int32_t overhead, overhead_per_group; int i, ngroups; ump = VFSTOUFS(mp); fs = ump->um_e2fs; if (fs->e2fs.e2fs_magic != E2FS_MAGIC) panic("ext2fs_statfs"); /* * Compute the overhead (FS structures) */ overhead_per_group = 1 /* block bitmap */ + 1 /* inode bitmap */ + fs->e2fs_itpg; overhead = fs->e2fs.e2fs_first_dblock + fs->e2fs_ncg * overhead_per_group; if (fs->e2fs.e2fs_rev > E2FS_REV0 && fs->e2fs.e2fs_features_rocompat & EXT2F_ROCOMPAT_SPARSESUPER) { for (i = 0, ngroups = 0; i < fs->e2fs_ncg; i++) { if (cg_has_sb(i)) ngroups++; } } else { ngroups = fs->e2fs_ncg; } overhead += ngroups * (1 + fs->e2fs_ngdb); sbp->f_bsize = fs->e2fs_bsize; sbp->f_iosize = fs->e2fs_bsize; sbp->f_blocks = fs->e2fs.e2fs_bcount - overhead; sbp->f_bfree = fs->e2fs.e2fs_fbcount; sbp->f_bavail = sbp->f_bfree - fs->e2fs.e2fs_rbcount; sbp->f_files = fs->e2fs.e2fs_icount; sbp->f_ffree = fs->e2fs.e2fs_ficount; if (sbp != &mp->mnt_stat) { bcopy(mp->mnt_stat.f_mntonname, sbp->f_mntonname, MNAMELEN); bcopy(mp->mnt_stat.f_mntfromname, sbp->f_mntfromname, MNAMELEN); } strncpy(sbp->f_fstypename, mp->mnt_vfc->vfc_name, MFSNAMELEN); return (0); } int ext2fs_sync_vnode(struct vnode *vp, void *); struct ext2fs_sync_args { int allerror; int waitfor; struct proc *p; struct ucred *cred; }; int ext2fs_sync_vnode(struct vnode *vp, void *args) { struct ext2fs_sync_args *esa = args; struct inode *ip; int error; ip = VTOI(vp); if (vp->v_type == VNON || ((ip->i_flag & (IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE)) == 0 && LIST_EMPTY(&vp->v_dirtyblkhd)) || esa->waitfor == MNT_LAZY) { return (0); } if (vget(vp, LK_EXCLUSIVE | LK_NOWAIT, esa->p)) return (0); if ((error = VOP_FSYNC(vp, esa->cred, esa->waitfor, esa->p)) != 0) esa->allerror = error; vput(vp); return (0); } /* * Go through the disk queues to initiate sandbagged IO; * go through the inodes to write those that have been modified; * initiate the writing of the super block if it has been modified. * * Should always be called with the mount point locked. */ int ext2fs_sync(struct mount *mp, int waitfor, struct ucred *cred, struct proc *p) { struct ufsmount *ump = VFSTOUFS(mp); struct m_ext2fs *fs; int error, allerror = 0; struct ext2fs_sync_args esa; fs = ump->um_e2fs; if (fs->e2fs_ronly != 0) { /* XXX */ printf("fs = %s\n", fs->e2fs_fsmnt); panic("update: rofs mod"); } /* * Write back each (modified) inode. */ esa.p = p; esa.cred = cred; esa.allerror = 0; esa.waitfor = waitfor; vfs_mount_foreach_vnode(mp, ext2fs_sync_vnode, &esa); if (esa.allerror != 0) allerror = esa.allerror; /* * Force stale file system control information to be flushed. */ if (waitfor != MNT_LAZY) { vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY, p); if ((error = VOP_FSYNC(ump->um_devvp, cred, waitfor, p)) != 0) allerror = error; VOP_UNLOCK(ump->um_devvp, 0, p); } /* * Write back modified superblock. */ if (fs->e2fs_fmod != 0) { fs->e2fs_fmod = 0; fs->e2fs.e2fs_wtime = time_second; if ((error = ext2fs_cgupdate(ump, waitfor))) allerror = error; } return (allerror); } /* * Look up a EXT2FS dinode number to find its incore vnode, otherwise read it * in from disk. If it is in core, wait for the lock bit to clear, then * return the inode locked. Detection and handling of mount points must be * done by the calling routine. */ int ext2fs_vget(struct mount *mp, ino_t ino, struct vnode **vpp) { struct m_ext2fs *fs; struct inode *ip; struct ext2fs_dinode *dp; struct ufsmount *ump; struct buf *bp; struct vnode *vp; dev_t dev; int error; ump = VFSTOUFS(mp); dev = ump->um_dev; retry: if ((*vpp = ufs_ihashget(dev, ino)) != NULL) return (0); /* Allocate a new vnode/inode. */ if ((error = getnewvnode(VT_EXT2FS, mp, ext2fs_vnodeop_p, &vp)) != 0) { *vpp = NULL; return (error); } ip = pool_get(&ext2fs_inode_pool, PR_WAITOK); memset(ip, 0, sizeof(struct inode)); lockinit(&ip->i_lock, PINOD, "inode", 0, 0); vp->v_data = ip; ip->i_vnode = vp; ip->i_ump = ump; ip->i_e2fs = fs = ump->um_e2fs; ip->i_dev = dev; ip->i_number = ino; ip->i_e2fs_last_lblk = 0; ip->i_e2fs_last_blk = 0; /* * Put it onto its hash chain and lock it so that other requests for * this inode will block if they arrive while we are sleeping waiting * for old data structures to be purged or for the contents of the * disk portion of this inode to be read. */ error = ufs_ihashins(ip); if (error) { vrele(vp); if (error == EEXIST) goto retry; return (error); } /* Read in the disk contents for the inode, copy into the inode. */ error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ino)), (int)fs->e2fs_bsize, NOCRED, &bp); if (error) { /* * The inode does not contain anything useful, so it would * be misleading to leave it on its hash chain. With mode * still zero, it will be unlinked and returned to the free * list by vput(). */ vput(vp); brelse(bp); *vpp = NULL; return (error); } dp = (struct ext2fs_dinode *) bp->b_data + ino_to_fsbo(fs, ino); ip->i_e2din = pool_get(&ext2fs_dinode_pool, PR_WAITOK); e2fs_iload(dp, ip->i_e2din); brelse(bp); ip->i_effnlink = ip->i_e2fs_nlink; /* * The fields for storing the UID and GID of an ext2fs inode are * limited to 16 bits. To overcome this limitation, Linux decided to * scatter the highest bits of these values into a previously reserved * area on the disk inode. We deal with this situation by having two * 32-bit fields *out* of the disk inode to hold the complete values. * Now that we are reading in the inode, compute these fields. */ ip->i_e2fs_uid = ip->i_e2fs_uid_low | (ip->i_e2fs_uid_high << 16); ip->i_e2fs_gid = ip->i_e2fs_gid_low | (ip->i_e2fs_gid_high << 16); /* If the inode was deleted, reset all fields */ if (ip->i_e2fs_dtime != 0) { ip->i_e2fs_mode = ip->i_e2fs_nblock = 0; (void)ext2fs_setsize(ip, 0); } /* * Initialize the vnode from the inode, check for aliases. * Note that the underlying vnode may have changed. */ error = ext2fs_vinit(mp, ext2fs_specop_p, EXT2FS_FIFOOPS, &vp); if (error) { vput(vp); *vpp = NULL; return (error); } /* * Finish inode initialization now that aliasing has been resolved. */ VREF(ip->i_devvp); /* * Set up a generation number for this inode if it does not * already have one. This should only happen on old filesystems. */ if (ip->i_e2fs_gen == 0) { if (++ext2gennumber < (u_long)time_second) ext2gennumber = time_second; ip->i_e2fs_gen = ext2gennumber; if ((vp->v_mount->mnt_flag & MNT_RDONLY) == 0) ip->i_flag |= IN_MODIFIED; } *vpp = vp; return (0); } /* * File handle to vnode * * Have to be really careful about stale file handles: * - check that the inode number is valid * - call ext2fs_vget() to get the locked inode * - check for an unallocated inode (i_mode == 0) * - check that the given client host has export rights and return * those rights via. exflagsp and credanonp */ int ext2fs_fhtovp(struct mount *mp, struct fid *fhp, struct vnode **vpp) { struct inode *ip; struct vnode *nvp; int error; struct ufid *ufhp; struct m_ext2fs *fs; ufhp = (struct ufid *)fhp; fs = VFSTOUFS(mp)->um_e2fs; if ((ufhp->ufid_ino < EXT2_FIRSTINO && ufhp->ufid_ino != EXT2_ROOTINO) || ufhp->ufid_ino > fs->e2fs_ncg * fs->e2fs.e2fs_ipg) return (ESTALE); if ((error = VFS_VGET(mp, ufhp->ufid_ino, &nvp)) != 0) { *vpp = NULLVP; return (error); } ip = VTOI(nvp); if (ip->i_e2fs_mode == 0 || ip->i_e2fs_dtime != 0 || ip->i_e2fs_gen != ufhp->ufid_gen) { vput(nvp); *vpp = NULLVP; return (ESTALE); } *vpp = nvp; return (0); } /* * Vnode pointer to File handle */ /* ARGSUSED */ int ext2fs_vptofh(struct vnode *vp, struct fid *fhp) { struct inode *ip; struct ufid *ufhp; ip = VTOI(vp); ufhp = (struct ufid *)fhp; ufhp->ufid_len = sizeof(struct ufid); ufhp->ufid_ino = ip->i_number; ufhp->ufid_gen = ip->i_e2fs_gen; return (0); } /* * no sysctl for ext2fs */ int ext2fs_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp, void *newp, size_t newlen, struct proc *p) { return (EOPNOTSUPP); } /* * Write a superblock and associated information back to disk. */ int ext2fs_sbupdate(struct ufsmount *mp, int waitfor) { struct m_ext2fs *fs = mp->um_e2fs; struct buf *bp; int error = 0; bp = getblk(mp->um_devvp, SBLOCK, SBSIZE, 0, 0); e2fs_sbsave(&fs->e2fs, (struct ext2fs *) bp->b_data); if (waitfor == MNT_WAIT) error = bwrite(bp); else bawrite(bp); return (error); } int ext2fs_cgupdate(struct ufsmount *mp, int waitfor) { struct m_ext2fs *fs = mp->um_e2fs; struct buf *bp; int i, error = 0, allerror = 0; allerror = ext2fs_sbupdate(mp, waitfor); for (i = 0; i < fs->e2fs_ngdb; i++) { bp = getblk(mp->um_devvp, fsbtodb(fs, ((fs->e2fs_bsize>1024)?0:1)+i+1), fs->e2fs_bsize, 0, 0); e2fs_cgsave(&fs->e2fs_gd[i* fs->e2fs_bsize / sizeof(struct ext2_gd)], (struct ext2_gd*)bp->b_data, fs->e2fs_bsize); if (waitfor == MNT_WAIT) error = bwrite(bp); else bawrite(bp); } if (!allerror && error) allerror = error; return (allerror); } static int ext2fs_checksb(struct ext2fs *fs, int ronly) { if (fs2h16(fs->e2fs_magic) != E2FS_MAGIC) { return (EIO); /* XXX needs translation */ } if (fs2h32(fs->e2fs_rev) > E2FS_REV1) { #ifdef DIAGNOSTIC printf("Ext2 fs: unsupported revision number: %x\n", fs2h32(fs->e2fs_rev)); #endif return (EIO); /* XXX needs translation */ } if (fs2h32(fs->e2fs_log_bsize) > 2) { /* block size = 1024|2048|4096 */ #ifdef DIAGNOSTIC printf("Ext2 fs: bad block size: %d (expected <=2 for ext2 fs)\n", fs2h32(fs->e2fs_log_bsize)); #endif return (EIO); /* XXX needs translation */ } if (fs2h32(fs->e2fs_rev) > E2FS_REV0) { if (fs2h32(fs->e2fs_first_ino) != EXT2_FIRSTINO || fs2h16(fs->e2fs_inode_size) != EXT2_DINODE_SIZE) { printf("Ext2 fs: unsupported inode size\n"); return (EINVAL); /* XXX needs translation */ } if (fs2h32(fs->e2fs_features_incompat) & ~EXT2F_INCOMPAT_SUPP) { printf("Ext2 fs: unsupported optional feature\n"); return (EINVAL); /* XXX needs translation */ } if (!ronly && fs2h32(fs->e2fs_features_rocompat) & ~EXT2F_ROCOMPAT_SUPP) { return (EROFS); /* XXX needs translation */ } } return (0); }