/*
* Copyright (c) 2008-2011 Hypertriton, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
* USE OF THIS SOFTWARE EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Routines related to circles.
*/
#include
#include
M_Circle2
M_CircleRead2(AG_DataSource *ds)
{
M_Circle2 C;
C.p = M_ReadVector2(ds);
C.r = M_ReadReal(ds);
return (C);
}
M_Circle3
M_CircleRead3(AG_DataSource *ds)
{
M_Circle3 C;
C.p = M_ReadVector3(ds);
C.r = M_ReadReal(ds);
return (C);
}
void
M_CircleWrite2(AG_DataSource *ds, M_Circle2 *C)
{
M_WriteVector2(ds, &C->p);
M_WriteReal(ds, C->r);
}
void
M_CircleWrite3(AG_DataSource *ds, M_Circle3 *C)
{
M_WriteVector3(ds, &C->p);
M_WriteReal(ds, C->r);
}
/* Create a circle from a point and radius. */
M_Circle2
M_CircleFromPt(M_Vector2 p, M_Real r)
{
M_Circle2 C;
C.p = p;
C.r = r;
return (C);
}
/* Compute minimal distance from a circle to a point p. */
M_Real
M_CirclePointDistance2(M_Circle2 C, M_Vector2 p)
{
M_Vector2 vR = M_VecSub2(p, C.p);
M_Real theta = Atan2(vR.y, vR.x);
return M_VecDistance2(p, M_VECTOR2(C.p.x + C.r*Cos(theta),
C.p.y + C.r*Sin(theta)));
}
/* Compute the intersection of two circles. */
M_GeomSet2
M_IntersectCircleCircle2(M_Circle2 C1, M_Circle2 C2)
{
M_GeomSet2 Sint = M_GEOM_SET_EMPTY;
M_Real d12 = M_VecDistance2(C1.p, C2.p);
M_Real a, h, b;
M_Vector2 p;
M_Geom2 G1, G2;
if (Fabs(C1.p.x - C2.p.x) <= M_MACHEP &&
Fabs(C1.p.x - C2.p.x) <= M_MACHEP &&
Fabs(C1.r - C2.r) <= M_MACHEP) {
G1.type = M_CIRCLE;
G1.g.circle = C1;
M_GeomSetAdd2(&Sint, &G1);
return (Sint);
}
if (d12 > (C1.r + C2.r) ||
d12 < Fabs(C1.r - C2.r)) {
return (Sint);
}
a = (C1.r*C1.r - C2.r*C2.r + d12*d12) / (2.0*d12);
h = Sqrt(C1.r*C1.r - a*a);
p = M_VecLERP2(C1.p, C2.p, a/d12);
b = h/d12;
G1.type = M_POINT;
G1.g.point.x = p.x - b*(C2.p.y - C1.p.y);
G1.g.point.y = p.y + b*(C2.p.x - C1.p.x);
G2.type = M_POINT;
G2.g.point.x = p.x + b*(C2.p.y - C1.p.y);
G2.g.point.y = p.y - b*(C2.p.x - C1.p.x);
M_GeomSetAdd2(&Sint, &G1);
if (M_VecDistance2(G1.g.point, G2.g.point) > M_MACHEP) {
M_GeomSetAdd2(&Sint, &G2);
}
return (Sint);
}
/* Compute the intersection of a circle and a line. */
M_GeomSet2
M_IntersectCircleLine2(M_Circle2 C, M_Line2 L)
{
M_GeomSet2 Sint = M_GEOM_SET_EMPTY;
M_Vector2 p1 = M_LineInitPt2(L);
M_Vector2 p2 = M_LineTermPt2(L);
M_Vector2 p3 = C.p;
M_Real a, b, c, det;
M_Geom2 G;
a = (p2.x - p1.x)*(p2.x - p1.x) + (p2.y - p1.y)*(p2.y - p1.y);
b = 2.0*( (p2.x - p1.x)*(p1.x - p3.x) + (p2.y - p1.y)*(p1.y - p3.y) );
c = p3.x*p3.x + p3.y*p3.y + p1.x*p1.x + p1.y*p1.y -
2.0*(p3.x*p1.x + p3.y*p1.y) - C.r*C.r;
det = b*b - 4.0*a*c;
if (det < 0.0) {
return (Sint);
} else if (det == 0.0) {
/* TODO Tangent! */
return (Sint);
} else {
M_Real e = Sqrt(det);
M_Real u1 = (-b + e) / (2.0*a);
M_Real u2 = (-b - e) / (2.0*a);
if ((u1 < 0.0 || u1 > 1.0) &&
(u2 < 0.0 || u2 > 1.0)) {
if ((u1 < 0.0 && u2 < 0.0) ||
(u1 > 1.0 && u2 > 1.0)) {
return (Sint);
} else {
if (u1 >= 0.0 && u1 <= 1.0) {
G.type = M_POINT;
G.g.point = M_VecLERP2(p1,p2,u1);
M_GeomSetAdd2(&Sint, &G);
}
if (u2 >= 0.0 && u2 <= 1.0) {
G.type = M_POINT;
G.g.point = M_VecLERP2(p1,p2,u2);
M_GeomSetAdd2(&Sint, &G);
}
}
} else {
if (u1 >= 0.0 && u1 <= 1.0) {
G.type = M_POINT;
G.g.point = M_VecLERP2(p1,p2,u1);
M_GeomSetAdd2(&Sint, &G);
}
if (u2 >= 0.0 && u2 <= 1.0) {
G.type = M_POINT;
G.g.point = M_VecLERP2(p1,p2,u2);
M_GeomSetAdd2(&Sint, &G);
}
}
}
return (Sint);
}