/* $OpenBSD: math_private.h,v 1.9 2008/07/24 09:40:16 martynas Exp $ */ /* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunPro, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== */ /* * from: @(#)fdlibm.h 5.1 93/09/24 */ #ifndef _MATH_PRIVATE_H_ #define _MATH_PRIVATE_H_ #include /* The original fdlibm code used statements like: n0 = ((*(int*)&one)>>29)^1; * index of high word * ix0 = *(n0+(int*)&x); * high word of x * ix1 = *((1-n0)+(int*)&x); * low word of x * to dig two 32 bit words out of the 64 bit IEEE floating point value. That is non-ANSI, and, moreover, the gcc instruction scheduler gets it wrong. We instead use the following macros. Unlike the original code, we determine the endianness at compile time, not at run time; I don't see much benefit to selecting endianness at run time. */ /* A union which permits us to convert between a double and two 32 bit ints. */ /* * The arm32 port is little endian except for the FP word order which is * big endian. */ #if (BYTE_ORDER == BIG_ENDIAN) || defined(arm32) typedef union { double value; struct { u_int32_t msw; u_int32_t lsw; } parts; } ieee_double_shape_type; typedef union { long double value; struct { u_int32_t msw; u_int32_t nsw; u_int32_t lsw; } parts; } ieee_extended_shape_type; typedef union { long double value; struct { u_int32_t mswhi; u_int32_t mswlo; u_int32_t lswhi; u_int32_t lswlo; } parts; } ieee_quad_shape_type; #endif #if (BYTE_ORDER == LITTLE_ENDIAN) && !defined(arm32) typedef union { double value; struct { u_int32_t lsw; u_int32_t msw; } parts; } ieee_double_shape_type; typedef union { long double value; struct { u_int32_t lswlo; u_int32_t lswhi; u_int32_t mswlo; u_int32_t mswhi; } parts; } ieee_quad_shape_type; typedef union { long double value; struct { u_int32_t lsw; u_int32_t nsw; u_int32_t msw; } parts; } ieee_extended_shape_type; #endif /* Get two 32 bit ints from a double. */ #define EXTRACT_WORDS(ix0,ix1,d) \ do { \ ieee_double_shape_type ew_u; \ ew_u.value = (d); \ (ix0) = ew_u.parts.msw; \ (ix1) = ew_u.parts.lsw; \ } while (0) /* Get the more significant 32 bit int from a double. */ #define GET_HIGH_WORD(i,d) \ do { \ ieee_double_shape_type gh_u; \ gh_u.value = (d); \ (i) = gh_u.parts.msw; \ } while (0) /* Get the less significant 32 bit int from a double. */ #define GET_LOW_WORD(i,d) \ do { \ ieee_double_shape_type gl_u; \ gl_u.value = (d); \ (i) = gl_u.parts.lsw; \ } while (0) /* Set a double from two 32 bit ints. */ #define INSERT_WORDS(d,ix0,ix1) \ do { \ ieee_double_shape_type iw_u; \ iw_u.parts.msw = (ix0); \ iw_u.parts.lsw = (ix1); \ (d) = iw_u.value; \ } while (0) /* Set the more significant 32 bits of a double from an int. */ #define SET_HIGH_WORD(d,v) \ do { \ ieee_double_shape_type sh_u; \ sh_u.value = (d); \ sh_u.parts.msw = (v); \ (d) = sh_u.value; \ } while (0) /* Set the less significant 32 bits of a double from an int. */ #define SET_LOW_WORD(d,v) \ do { \ ieee_double_shape_type sl_u; \ sl_u.value = (d); \ sl_u.parts.lsw = (v); \ (d) = sl_u.value; \ } while (0) /* A union which permits us to convert between a float and a 32 bit int. */ typedef union { float value; u_int32_t word; } ieee_float_shape_type; /* Get a 32 bit int from a float. */ #define GET_FLOAT_WORD(i,d) \ do { \ ieee_float_shape_type gf_u; \ gf_u.value = (d); \ (i) = gf_u.word; \ } while (0) /* Set a float from a 32 bit int. */ #define SET_FLOAT_WORD(d,i) \ do { \ ieee_float_shape_type sf_u; \ sf_u.word = (i); \ (d) = sf_u.value; \ } while (0) #ifdef FLT_EVAL_METHOD /* * Attempt to get strict C99 semantics for assignment with non-C99 compilers. */ #if FLT_EVAL_METHOD == 0 || __GNUC__ == 0 #define STRICT_ASSIGN(type, lval, rval) ((lval) = (rval)) #else #define STRICT_ASSIGN(type, lval, rval) do { \ volatile type __lval; \ \ if (sizeof(type) >= sizeof(double)) \ (lval) = (rval); \ else { \ __lval = (rval); \ (lval) = __lval; \ } \ } while (0) #endif #endif /* ieee style elementary functions */ extern double __ieee754_sqrt(double); extern double __ieee754_acos(double); extern double __ieee754_acosh(double); extern double __ieee754_log(double); extern double __ieee754_atanh(double); extern double __ieee754_asin(double); extern double __ieee754_atan2(double,double); extern double __ieee754_exp(double); extern double __ieee754_cosh(double); extern double __ieee754_fmod(double,double); extern double __ieee754_pow(double,double); extern double __ieee754_lgamma_r(double,int *); extern double __ieee754_gamma_r(double,int *); extern double __ieee754_lgamma(double); extern double __ieee754_gamma(double); extern double __ieee754_log10(double); extern double __ieee754_sinh(double); extern double __ieee754_hypot(double,double); extern double __ieee754_j0(double); extern double __ieee754_j1(double); extern double __ieee754_y0(double); extern double __ieee754_y1(double); extern double __ieee754_jn(int,double); extern double __ieee754_yn(int,double); extern double __ieee754_remainder(double,double); extern int __ieee754_rem_pio2(double,double*); extern double __ieee754_scalb(double,double); /* fdlibm kernel function */ extern double __kernel_standard(double,double,int); extern double __kernel_sin(double,double,int); extern double __kernel_cos(double,double); extern double __kernel_tan(double,double,int); extern int __kernel_rem_pio2(double*,double*,int,int,int,const int*); /* ieee style elementary float functions */ extern float __ieee754_sqrtf(float); extern float __ieee754_acosf(float); extern float __ieee754_acoshf(float); extern float __ieee754_logf(float); extern float __ieee754_atanhf(float); extern float __ieee754_asinf(float); extern float __ieee754_atan2f(float,float); extern float __ieee754_expf(float); extern float __ieee754_coshf(float); extern float __ieee754_fmodf(float,float); extern float __ieee754_powf(float,float); extern float __ieee754_lgammaf_r(float,int *); extern float __ieee754_gammaf_r(float,int *); extern float __ieee754_lgammaf(float); extern float __ieee754_gammaf(float); extern float __ieee754_log10f(float); extern float __ieee754_sinhf(float); extern float __ieee754_hypotf(float,float); extern float __ieee754_j0f(float); extern float __ieee754_j1f(float); extern float __ieee754_y0f(float); extern float __ieee754_y1f(float); extern float __ieee754_jnf(int,float); extern float __ieee754_ynf(int,float); extern float __ieee754_remainderf(float,float); extern int __ieee754_rem_pio2f(float,float*); extern float __ieee754_scalbf(float,float); /* float versions of fdlibm kernel functions */ extern float __kernel_sinf(float,float,int); extern float __kernel_cosf(float,float); extern float __kernel_tanf(float,float,int); extern int __kernel_rem_pio2f(float*,float*,int,int,int,const int*); /* * TRUNC() is a macro that sets the trailing 27 bits in the mantissa * of an IEEE double variable to zero. It must be expression-like * for syntactic reasons, and we implement this expression using * an inline function instead of a pure macro to avoid depending * on the gcc feature of statement-expressions. */ #define TRUNC(d) (_b_trunc(&(d))) static __inline void _b_trunc(volatile double *_dp) { uint32_t _lw; GET_LOW_WORD(_lw, *_dp); SET_LOW_WORD(*_dp, _lw & 0xf8000000); } struct Double { double a; double b; }; /* * Functions internal to the math package, yet not static. */ double __exp__D(double, double); struct Double __log__D(double); #endif /* _MATH_PRIVATE_H_ */