/* $OpenBSD: sig_machdep.c,v 1.2 2004/02/16 15:40:00 miod Exp $ */ /* $NetBSD: sig_machdep.c,v 1.22 2003/10/08 00:28:41 thorpej Exp $ */ /* * Copyright (c) 1994-1998 Mark Brinicombe. * Copyright (c) 1994 Brini. * All rights reserved. * * This code is derived from software written for Brini by Mark Brinicombe * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Mark Brinicombe * for the NetBSD Project. * 4. The name of the company nor the name of the author may be used to * endorse or promote products derived from this software without specific * prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * Machine dependant functions for kernel setup * * Created : 17/09/94 */ #include #include /* XXX only needed by syscallargs.h */ #include #include #include #include #include #include #include #include #include #include #ifndef acorn26 #include #endif static __inline struct trapframe * process_frame(struct proc *p) { return p->p_addr->u_pcb.pcb_tf; } void *getframe(struct proc *p, int sig, int *onstack); /* * Send an interrupt to process. * * Stack is set up to allow sigcode stored * in u. to call routine, followed by kcall * to sigreturn routine below. After sigreturn * resets the signal mask, the stack, and the * frame pointer, it returns to the user specified pc. */ void sendsig(sig_t catcher, int sig, int returnmask, u_long code, int type, union sigval val) { struct proc *p = curproc; struct trapframe *tf; struct sigframe *fp, frame; struct sigacts *psp = p->p_sigacts; int oonstack = psp->ps_sigstk.ss_flags & SS_ONSTACK; int onstack = 0; tf = process_frame(p); /* Do we need to jump onto the signal stack? */ /* Allocate space for the signal handler context. */ if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack && (psp->ps_sigonstack & sigmask(sig))) { onstack = 1; fp = (struct sigframe *)((caddr_t)psp->ps_sigstk.ss_sp + psp->ps_sigstk.ss_size); } else fp = (struct sigframe *)tf->tf_usr_sp; /* make room on the stack */ fp--; /* make the stack aligned */ fp = (void *)STACKALIGN(fp); /* Build stack frame for signal trampoline. */ frame.sf_signum = sig; frame.sf_sip = NULL; frame.sf_scp = &fp->sf_sc; frame.sf_handler = catcher; /* Save register context. */ frame.sf_sc.sc_r0 = tf->tf_r0; frame.sf_sc.sc_r1 = tf->tf_r1; frame.sf_sc.sc_r2 = tf->tf_r2; frame.sf_sc.sc_r3 = tf->tf_r3; frame.sf_sc.sc_r4 = tf->tf_r4; frame.sf_sc.sc_r5 = tf->tf_r5; frame.sf_sc.sc_r6 = tf->tf_r6; frame.sf_sc.sc_r7 = tf->tf_r7; frame.sf_sc.sc_r8 = tf->tf_r8; frame.sf_sc.sc_r9 = tf->tf_r9; frame.sf_sc.sc_r10 = tf->tf_r10; frame.sf_sc.sc_r11 = tf->tf_r11; frame.sf_sc.sc_r12 = tf->tf_r12; frame.sf_sc.sc_usr_sp = tf->tf_usr_sp; frame.sf_sc.sc_usr_lr = tf->tf_usr_lr; frame.sf_sc.sc_svc_lr = tf->tf_svc_lr; frame.sf_sc.sc_pc = tf->tf_pc; frame.sf_sc.sc_spsr = tf->tf_spsr; /* Save signal stack. */ frame.sf_sc.sc_onstack = psp->ps_sigstk.ss_flags & SS_ONSTACK; /* Save signal mask. */ frame.sf_sc.sc_mask = returnmask; if (psp->ps_siginfo & sigmask(sig)) { frame.sf_sip = &fp->sf_si; initsiginfo(&frame.sf_si, sig, code, type, val); } if (copyout(&frame, fp, sizeof(frame)) != 0) { /* * Process has trashed its stack; give it an illegal * instruction to halt it in its tracks. */ sigexit(p, SIGILL); /* NOTREACHED */ } /* * Build context to run handler in. We invoke the handler * directly, only returning via the trampoline. Note the * trampoline version numbers are coordinated with machine- * dependent code in libc. */ /* * this was all in the switch below, seemed daft to duplicate it, if * we do a new trampoline version it might change then */ tf->tf_r0 = sig; tf->tf_r1 = (int)frame.sf_sip; tf->tf_r2 = (int)frame.sf_scp; tf->tf_pc = (int)frame.sf_handler; tf->tf_usr_sp = (int)fp; tf->tf_usr_lr = (int)p->p_sigcode; /* XXX This should not be needed. */ cpu_icache_sync_all(); /* Remember that we're now on the signal stack. */ if (onstack) psp->ps_sigstk.ss_flags |= SS_ONSTACK; } #if 0 void * getframe(struct proc *p, int sig, int *onstack) { struct sigctx *ctx = &p->p_sigctx; struct trapframe *tf = process_frame(l); /* Do we need to jump onto the signal stack? */ *onstack = (ctx->ps_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 && (SIGACTION(p, sig).sa_flags & SA_ONSTACK) != 0; if (*onstack) return (char *)ctx->ps_sigstk.ss_sp + ctx->ps_sigstk.ss_size; return (void *)tf->tf_usr_sp; } #endif /* * System call to cleanup state after a signal * has been taken. Reset signal mask and * stack state from context left by sendsig (above). * Return to previous pc and psl as specified by * context left by sendsig. Check carefully to * make sure that the user has not modified the * psr to gain improper privileges or to cause * a machine fault. */ int sys_sigreturn(struct proc *p, void *v, register_t *retval) { struct sys_sigreturn_args /* { syscallarg(struct sigcontext *) sigcntxp; } */ *uap = v; struct sigcontext *scp, context; struct trapframe *tf; struct sigacts *psp = p->p_sigacts; /* * we do a rather scary test in userland */ if (v == NULL) return (EFAULT); /* * The trampoline code hands us the context. * It is unsafe to keep track of it ourselves, in the event that a * program jumps out of a signal handler. */ scp = SCARG(uap, sigcntxp); if (copyin((caddr_t)scp, &context, sizeof(*scp)) != 0) return (EFAULT); /* * Make sure the processor mode has not been tampered with and * interrupts have not been disabled. */ #ifdef __PROG32 if ((context.sc_spsr & PSR_MODE) != PSR_USR32_MODE || (context.sc_spsr & (I32_bit | F32_bit)) != 0) return (EINVAL); #else /* __PROG26 */ if ((context.sc_pc & R15_MODE) != R15_MODE_USR || (context.sc_pc & (R15_IRQ_DISABLE | R15_FIQ_DISABLE)) != 0) return EINVAL; #endif /* Restore register context. */ tf = process_frame(p); tf->tf_r0 = context.sc_r0; tf->tf_r1 = context.sc_r1; tf->tf_r2 = context.sc_r2; tf->tf_r3 = context.sc_r3; tf->tf_r4 = context.sc_r4; tf->tf_r5 = context.sc_r5; tf->tf_r6 = context.sc_r6; tf->tf_r7 = context.sc_r7; tf->tf_r8 = context.sc_r8; tf->tf_r9 = context.sc_r9; tf->tf_r10 = context.sc_r10; tf->tf_r11 = context.sc_r11; tf->tf_r12 = context.sc_r12; tf->tf_usr_sp = context.sc_usr_sp; tf->tf_usr_lr = context.sc_usr_lr; tf->tf_svc_lr = context.sc_svc_lr; tf->tf_pc = context.sc_pc; tf->tf_spsr = context.sc_spsr; /* Restore signal stack. */ if (context.sc_onstack & SS_ONSTACK) psp->ps_sigstk.ss_flags |= SS_ONSTACK; else psp->ps_sigstk.ss_flags &= ~SS_ONSTACK; /* Restore signal mask. */ #if 0 (void) sigprocmask1(p, SIG_SETMASK, &context.sc_mask, 0); #else p->p_sigmask = context.sc_mask & ~sigcantmask; #endif return (EJUSTRETURN); } #if 0 void cpu_getmcontext(p, mcp, flags) struct proc *p; mcontext_t *mcp; unsigned int *flags; { struct trapframe *tf = process_frame(p); __greg_t *gr = mcp->__gregs; __greg_t ras_pc; /* Save General Register context. */ gr[_REG_R0] = tf->tf_r0; gr[_REG_R1] = tf->tf_r1; gr[_REG_R2] = tf->tf_r2; gr[_REG_R3] = tf->tf_r3; gr[_REG_R4] = tf->tf_r4; gr[_REG_R5] = tf->tf_r5; gr[_REG_R6] = tf->tf_r6; gr[_REG_R7] = tf->tf_r7; gr[_REG_R8] = tf->tf_r8; gr[_REG_R9] = tf->tf_r9; gr[_REG_R10] = tf->tf_r10; gr[_REG_R11] = tf->tf_r11; gr[_REG_R12] = tf->tf_r12; gr[_REG_SP] = tf->tf_usr_sp; gr[_REG_LR] = tf->tf_usr_lr; gr[_REG_PC] = tf->tf_pc; gr[_REG_CPSR] = tf->tf_spsr; if ((ras_pc = (__greg_t)ras_lookup(l->l_proc, (caddr_t) gr[_REG_PC])) != -1) gr[_REG_PC] = ras_pc; *flags |= _UC_CPU; #ifdef ARMFPE /* Save Floating Point Register context. */ arm_fpe_getcontext(p, (struct fpreg *)(void *)&mcp->fpregs); *flags |= _UC_FPU; #endif } int cpu_setmcontext(p, mcp, flags) struct proc *p; const mcontext_t *mcp; unsigned int flags; { struct trapframe *tf = process_frame(l); __greg_t *gr = mcp->__gregs; if ((flags & _UC_CPU) != 0) { /* Restore General Register context. */ /* Make sure the processor mode has not been tampered with. */ #ifdef PROG32 if ((gr[_REG_CPSR] & PSR_MODE) != PSR_USR32_MODE || (gr[_REG_CPSR] & (I32_bit | F32_bit)) != 0) return (EINVAL); #else /* PROG26 */ if ((gr[_REG_PC] & R15_MODE) != R15_MODE_USR || (gr[_REG_PC] & (R15_IRQ_DISABLE | R15_FIQ_DISABLE)) != 0) return (EINVAL); #endif tf->tf_r0 = gr[_REG_R0]; tf->tf_r1 = gr[_REG_R1]; tf->tf_r2 = gr[_REG_R2]; tf->tf_r3 = gr[_REG_R3]; tf->tf_r4 = gr[_REG_R4]; tf->tf_r5 = gr[_REG_R5]; tf->tf_r6 = gr[_REG_R6]; tf->tf_r7 = gr[_REG_R7]; tf->tf_r8 = gr[_REG_R8]; tf->tf_r9 = gr[_REG_R9]; tf->tf_r10 = gr[_REG_R10]; tf->tf_r11 = gr[_REG_R11]; tf->tf_r12 = gr[_REG_R12]; tf->tf_usr_sp = gr[_REG_SP]; tf->tf_usr_lr = gr[_REG_LR]; tf->tf_pc = gr[_REG_PC]; tf->tf_spsr = gr[_REG_CPSR]; } #ifdef ARMFPE if ((flags & _UC_FPU) != 0) { /* Restore Floating Point Register context. */ arm_fpe_setcontext(p, (struct fpreg *)(void *)&mcp->__fpregs); } #endif if (flags & _UC_SETSTACK) l->l_proc->p_sigctx.ps_sigstk.ss_flags |= SS_ONSTACK; if (flags & _UC_CLRSTACK) l->l_proc->p_sigctx.ps_sigstk.ss_flags &= ~SS_ONSTACK; return (0); } #endif