/* $OpenBSD: pmap.h,v 1.9 2007/10/10 15:53:51 art Exp $ */ /* $NetBSD: pmap.h,v 1.76 2003/09/06 09:10:46 rearnsha Exp $ */ /* * Copyright (c) 2002, 2003 Wasabi Systems, Inc. * All rights reserved. * * Written by Jason R. Thorpe & Steve C. Woodford for Wasabi Systems, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed for the NetBSD Project by * Wasabi Systems, Inc. * 4. The name of Wasabi Systems, Inc. may not be used to endorse * or promote products derived from this software without specific prior * written permission. * * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (c) 1994,1995 Mark Brinicombe. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Mark Brinicombe * 4. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef _ARM32_PMAP_H_ #define _ARM32_PMAP_H_ #ifdef _KERNEL #include #include #ifndef _LOCORE #include #endif /* * a pmap describes a processes' 4GB virtual address space. this * virtual address space can be broken up into 4096 1MB regions which * are described by L1 PTEs in the L1 table. * * There is a line drawn at KERNEL_BASE. Everything below that line * changes when the VM context is switched. Everything above that line * is the same no matter which VM context is running. This is achieved * by making the L1 PTEs for those slots above KERNEL_BASE reference * kernel L2 tables. * * The basic layout of the virtual address space thus looks like this: * * 0xffffffff * . * . * . * KERNEL_BASE * -------------------- * . * . * . * 0x00000000 */ /* * The number of L2 descriptor tables which can be tracked by an l2_dtable. * A bucket size of 16 provides for 16MB of contiguous virtual address * space per l2_dtable. Most processes will, therefore, require only two or * three of these to map their whole working set. */ #define L2_BUCKET_LOG2 4 #define L2_BUCKET_SIZE (1 << L2_BUCKET_LOG2) /* * Given the above "L2-descriptors-per-l2_dtable" constant, the number * of l2_dtable structures required to track all possible page descriptors * mappable by an L1 translation table is given by the following constants: */ #define L2_LOG2 ((32 - L1_S_SHIFT) - L2_BUCKET_LOG2) #define L2_SIZE (1 << L2_LOG2) #ifndef _LOCORE struct l1_ttable; struct l2_dtable; /* * Track cache/tlb occupancy using the following structure */ union pmap_cache_state { struct { union { u_int8_t csu_cache_b[2]; u_int16_t csu_cache; } cs_cache_u; union { u_int8_t csu_tlb_b[2]; u_int16_t csu_tlb; } cs_tlb_u; } cs_s; u_int32_t cs_all; }; #define cs_cache_id cs_s.cs_cache_u.csu_cache_b[0] #define cs_cache_d cs_s.cs_cache_u.csu_cache_b[1] #define cs_cache cs_s.cs_cache_u.csu_cache #define cs_tlb_id cs_s.cs_tlb_u.csu_tlb_b[0] #define cs_tlb_d cs_s.cs_tlb_u.csu_tlb_b[1] #define cs_tlb cs_s.cs_tlb_u.csu_tlb /* * Assigned to cs_all to force cacheops to work for a particular pmap */ #define PMAP_CACHE_STATE_ALL 0xffffffffu /* * This structure is used by machine-dependent code to describe * static mappings of devices, created at bootstrap time. */ struct pmap_devmap { vaddr_t pd_va; /* virtual address */ paddr_t pd_pa; /* physical address */ psize_t pd_size; /* size of region */ vm_prot_t pd_prot; /* protection code */ int pd_cache; /* cache attributes */ }; /* * The pmap structure itself */ struct pmap { u_int8_t pm_domain; boolean_t pm_remove_all; struct l1_ttable *pm_l1; union pmap_cache_state pm_cstate; u_int pm_refs; simple_lock_data_t pm_lock; struct l2_dtable *pm_l2[L2_SIZE]; struct pmap_statistics pm_stats; LIST_ENTRY(pmap) pm_list; }; typedef struct pmap *pmap_t; /* * Physical / virtual address structure. In a number of places (particularly * during bootstrapping) we need to keep track of the physical and virtual * addresses of various pages */ typedef struct pv_addr { SLIST_ENTRY(pv_addr) pv_list; paddr_t pv_pa; vaddr_t pv_va; } pv_addr_t; /* * Determine various modes for PTEs (user vs. kernel, cacheable * vs. non-cacheable). */ #define PTE_KERNEL 0 #define PTE_USER 1 #define PTE_NOCACHE 0 #define PTE_CACHE 1 #define PTE_PAGETABLE 2 /* * Flags that indicate attributes of pages or mappings of pages. * * The PVF_MOD and PVF_REF flags are stored in the mdpage for each * page. PVF_WIRED, PVF_WRITE, and PVF_NC are kept in individual * pv_entry's for each page. They live in the same "namespace" so * that we can clear multiple attributes at a time. * * Note the "non-cacheable" flag generally means the page has * multiple mappings in a given address space. */ #define PVF_MOD 0x01 /* page is modified */ #define PVF_REF 0x02 /* page is referenced */ #define PVF_WIRED 0x04 /* mapping is wired */ #define PVF_WRITE 0x08 /* mapping is writable */ #define PVF_EXEC 0x10 /* mapping is executable */ #define PVF_UNC 0x20 /* mapping is 'user' non-cacheable */ #define PVF_KNC 0x40 /* mapping is 'kernel' non-cacheable */ #define PVF_NC (PVF_UNC|PVF_KNC) /* * Commonly referenced structures */ extern struct pmap kernel_pmap_store; extern int pmap_debug_level; /* Only exists if PMAP_DEBUG */ /* * Macros that we need to export */ #define pmap_kernel() (&kernel_pmap_store) #define pmap_resident_count(pmap) ((pmap)->pm_stats.resident_count) #define pmap_wired_count(pmap) ((pmap)->pm_stats.wired_count) #define pmap_is_modified(pg) \ (((pg)->mdpage.pvh_attrs & PVF_MOD) != 0) #define pmap_is_referenced(pg) \ (((pg)->mdpage.pvh_attrs & PVF_REF) != 0) #define pmap_deactivate(p) do { /* nothing */ } while (0) #define pmap_copy(dp, sp, da, l, sa) do { /* nothing */ } while (0) #define pmap_phys_address(ppn) (ptoa(ppn)) #define pmap_proc_iflush(p, va, len) do { /* nothing */ } while (0) #define pmap_unuse_final(p) do { /* nothing */ } while (0) #define pmap_remove_holes(map) do { /* nothing */ } while (0) /* * Functions that we need to export */ void pmap_procwr(struct proc *, vaddr_t, int); void pmap_remove_all(pmap_t); boolean_t pmap_extract(pmap_t, vaddr_t, paddr_t *); #define PMAP_NEED_PROCWR #define PMAP_GROWKERNEL /* turn on pmap_growkernel interface */ /* Functions we use internally. */ void pmap_bootstrap(pd_entry_t *, vaddr_t, vaddr_t); int pmap_fault_fixup(pmap_t, vaddr_t, vm_prot_t, int); boolean_t pmap_get_pde_pte(pmap_t, vaddr_t, pd_entry_t **, pt_entry_t **); boolean_t pmap_get_pde(pmap_t, vaddr_t, pd_entry_t **); void pmap_set_pcb_pagedir(pmap_t, struct pcb *); void pmap_debug(int); void pmap_postinit(void); void vector_page_setprot(int); const struct pmap_devmap *pmap_devmap_find_pa(paddr_t, psize_t); const struct pmap_devmap *pmap_devmap_find_va(vaddr_t, vsize_t); /* Bootstrapping routines. */ void pmap_map_section(vaddr_t, vaddr_t, paddr_t, int, int); void pmap_map_entry(vaddr_t, vaddr_t, paddr_t, int, int); vsize_t pmap_map_chunk(vaddr_t, vaddr_t, paddr_t, vsize_t, int, int); void pmap_link_l2pt(vaddr_t, vaddr_t, pv_addr_t *); void pmap_devmap_bootstrap(vaddr_t, const struct pmap_devmap *); void pmap_devmap_register(const struct pmap_devmap *); /* * Special page zero routine for use by the idle loop (no cache cleans). */ boolean_t pmap_pageidlezero(struct vm_page *); #define PMAP_PAGEIDLEZERO(pg) pmap_pageidlezero((pg)) /* * The current top of kernel VM */ extern vaddr_t pmap_curmaxkvaddr; /* * Useful macros and constants */ /* Virtual address to page table entry */ static __inline pt_entry_t * vtopte(vaddr_t va) { pd_entry_t *pdep; pt_entry_t *ptep; if (pmap_get_pde_pte(pmap_kernel(), va, &pdep, &ptep) == FALSE) return (NULL); return (ptep); } /* * The new pmap ensures that page-tables are always mapping Write-Thru. * Thus, on some platforms we can run fast and loose and avoid syncing PTEs * on every change. * * Unfortunately, not all CPUs have a write-through cache mode. So we * define PMAP_NEEDS_PTE_SYNC for C code to conditionally do PTE syncs, * and if there is the chance for PTE syncs to be needed, we define * PMAP_INCLUDE_PTE_SYNC so e.g. assembly code can include (and run) * the code. */ extern int pmap_needs_pte_sync; /* * StrongARM SA-1 caches do not have a write-through mode. So, on these, * we need to do PTE syncs. If only SA-1 is configured, then evaluate * this at compile time. */ #if (ARM_MMU_SA1 == 1) && (ARM_NMMUS == 1) #define PMAP_NEEDS_PTE_SYNC 1 #define PMAP_INCLUDE_PTE_SYNC #elif (ARM_MMU_SA1 == 0) #define PMAP_NEEDS_PTE_SYNC 0 #endif /* * Provide a fallback in case we were not able to determine it at * compile-time. */ #ifndef PMAP_NEEDS_PTE_SYNC #define PMAP_NEEDS_PTE_SYNC pmap_needs_pte_sync #define PMAP_INCLUDE_PTE_SYNC #endif #define PTE_SYNC(pte) \ do { \ if (PMAP_NEEDS_PTE_SYNC) \ cpu_dcache_wb_range((vaddr_t)(pte), sizeof(pt_entry_t));\ } while (/*CONSTCOND*/0) #define PTE_SYNC_RANGE(pte, cnt) \ do { \ if (PMAP_NEEDS_PTE_SYNC) { \ cpu_dcache_wb_range((vaddr_t)(pte), \ (cnt) << 2); /* * sizeof(pt_entry_t) */ \ } \ } while (/*CONSTCOND*/0) #define l1pte_valid(pde) ((pde) != 0) #define l1pte_section_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_S) #define l1pte_page_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_C) #define l1pte_fpage_p(pde) (((pde) & L1_TYPE_MASK) == L1_TYPE_F) #define l2pte_index(v) (((v) & L2_ADDR_BITS) >> L2_S_SHIFT) #define l2pte_valid(pte) ((pte) != 0) #define l2pte_pa(pte) ((pte) & L2_S_FRAME) #define l2pte_minidata(pte) (((pte) & \ (L2_B | L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X)))\ == (L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X))) /* L1 and L2 page table macros */ #define pmap_pde_v(pde) l1pte_valid(*(pde)) #define pmap_pde_section(pde) l1pte_section_p(*(pde)) #define pmap_pde_page(pde) l1pte_page_p(*(pde)) #define pmap_pde_fpage(pde) l1pte_fpage_p(*(pde)) #define pmap_pte_v(pte) l2pte_valid(*(pte)) #define pmap_pte_pa(pte) l2pte_pa(*(pte)) /* Size of the kernel part of the L1 page table */ #define KERNEL_PD_SIZE \ (L1_TABLE_SIZE - (KERNEL_BASE >> L1_S_SHIFT) * sizeof(pd_entry_t)) /************************* ARM MMU configuration *****************************/ #if (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 void pmap_copy_page_generic(struct vm_page *, struct vm_page *); void pmap_zero_page_generic(struct vm_page *); void pmap_pte_init_generic(void); #if defined(CPU_ARM8) void pmap_pte_init_arm8(void); #endif #if defined(CPU_ARM9) void pmap_pte_init_arm9(void); #endif /* CPU_ARM9 */ #if defined(CPU_ARM10) void pmap_pte_init_arm10(void); #endif /* CPU_ARM10 */ #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */ #if ARM_MMU_SA1 == 1 void pmap_pte_init_sa1(void); #endif /* ARM_MMU_SA1 == 1 */ #if ARM_MMU_XSCALE == 1 void pmap_copy_page_xscale(struct vm_page *, struct vm_page *); void pmap_zero_page_xscale(struct vm_page *); void pmap_pte_init_xscale(void); void xscale_setup_minidata(vaddr_t, vaddr_t, paddr_t); #define PMAP_UAREA(va) pmap_uarea(va) void pmap_uarea(vaddr_t); #endif /* ARM_MMU_XSCALE == 1 */ extern pt_entry_t pte_l1_s_cache_mode; extern pt_entry_t pte_l1_s_cache_mask; extern pt_entry_t pte_l2_l_cache_mode; extern pt_entry_t pte_l2_l_cache_mask; extern pt_entry_t pte_l2_s_cache_mode; extern pt_entry_t pte_l2_s_cache_mask; extern pt_entry_t pte_l1_s_cache_mode_pt; extern pt_entry_t pte_l2_l_cache_mode_pt; extern pt_entry_t pte_l2_s_cache_mode_pt; extern pt_entry_t pte_l2_s_prot_u; extern pt_entry_t pte_l2_s_prot_w; extern pt_entry_t pte_l2_s_prot_mask; extern pt_entry_t pte_l1_s_proto; extern pt_entry_t pte_l1_c_proto; extern pt_entry_t pte_l2_s_proto; extern void (*pmap_copy_page_func)(struct vm_page *, struct vm_page *); extern void (*pmap_zero_page_func)(struct vm_page *); #endif /* !_LOCORE */ /*****************************************************************************/ /* * tell MI code that the cache is virtually-indexed *and* virtually-tagged. */ #define PMAP_CACHE_VIVT /* * Definitions for MMU domains */ #define PMAP_DOMAINS 15 /* 15 'user' domains (0-14) */ #define PMAP_DOMAIN_KERNEL 15 /* The kernel uses domain #15 */ /* * These macros define the various bit masks in the PTE. * * We use these macros since we use different bits on different processor * models. */ #define L1_S_PROT_U (L1_S_AP(AP_U)) #define L1_S_PROT_W (L1_S_AP(AP_W)) #define L1_S_PROT_MASK (L1_S_PROT_U|L1_S_PROT_W) #define L1_S_CACHE_MASK_generic (L1_S_B|L1_S_C) #define L1_S_CACHE_MASK_xscale (L1_S_B|L1_S_C|L1_S_XSCALE_TEX(TEX_XSCALE_X)) #define L2_L_PROT_U (L2_AP(AP_U)) #define L2_L_PROT_W (L2_AP(AP_W)) #define L2_L_PROT_MASK (L2_L_PROT_U|L2_L_PROT_W) #define L2_L_CACHE_MASK_generic (L2_B|L2_C) #define L2_L_CACHE_MASK_xscale (L2_B|L2_C|L2_XSCALE_L_TEX(TEX_XSCALE_X)) #define L2_S_PROT_U_generic (L2_AP(AP_U)) #define L2_S_PROT_W_generic (L2_AP(AP_W)) #define L2_S_PROT_MASK_generic (L2_S_PROT_U|L2_S_PROT_W) #define L2_S_PROT_U_xscale (L2_AP0(AP_U)) #define L2_S_PROT_W_xscale (L2_AP0(AP_W)) #define L2_S_PROT_MASK_xscale (L2_S_PROT_U|L2_S_PROT_W) #define L2_S_CACHE_MASK_generic (L2_B|L2_C) #define L2_S_CACHE_MASK_xscale (L2_B|L2_C|L2_XSCALE_T_TEX(TEX_XSCALE_X)) #define L1_S_PROTO_generic (L1_TYPE_S | L1_S_IMP) #define L1_S_PROTO_xscale (L1_TYPE_S) #define L1_C_PROTO_generic (L1_TYPE_C | L1_C_IMP2) #define L1_C_PROTO_xscale (L1_TYPE_C) #define L2_L_PROTO (L2_TYPE_L) #define L2_S_PROTO_generic (L2_TYPE_S) #define L2_S_PROTO_xscale (L2_TYPE_XSCALE_XS) /* * User-visible names for the ones that vary with MMU class. */ #if ARM_NMMUS > 1 /* More than one MMU class configured; use variables. */ #define L2_S_PROT_U pte_l2_s_prot_u #define L2_S_PROT_W pte_l2_s_prot_w #define L2_S_PROT_MASK pte_l2_s_prot_mask #define L1_S_CACHE_MASK pte_l1_s_cache_mask #define L2_L_CACHE_MASK pte_l2_l_cache_mask #define L2_S_CACHE_MASK pte_l2_s_cache_mask #define L1_S_PROTO pte_l1_s_proto #define L1_C_PROTO pte_l1_c_proto #define L2_S_PROTO pte_l2_s_proto #define pmap_copy_page(s, d) (*pmap_copy_page_func)((s), (d)) #define pmap_zero_page(d) (*pmap_zero_page_func)((d)) #elif (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 #define L2_S_PROT_U L2_S_PROT_U_generic #define L2_S_PROT_W L2_S_PROT_W_generic #define L2_S_PROT_MASK L2_S_PROT_MASK_generic #define L1_S_CACHE_MASK L1_S_CACHE_MASK_generic #define L2_L_CACHE_MASK L2_L_CACHE_MASK_generic #define L2_S_CACHE_MASK L2_S_CACHE_MASK_generic #define L1_S_PROTO L1_S_PROTO_generic #define L1_C_PROTO L1_C_PROTO_generic #define L2_S_PROTO L2_S_PROTO_generic #define pmap_copy_page(s, d) pmap_copy_page_generic((s), (d)) #define pmap_zero_page(d) pmap_zero_page_generic((d)) #elif ARM_MMU_XSCALE == 1 #define L2_S_PROT_U L2_S_PROT_U_xscale #define L2_S_PROT_W L2_S_PROT_W_xscale #define L2_S_PROT_MASK L2_S_PROT_MASK_xscale #define L1_S_CACHE_MASK L1_S_CACHE_MASK_xscale #define L2_L_CACHE_MASK L2_L_CACHE_MASK_xscale #define L2_S_CACHE_MASK L2_S_CACHE_MASK_xscale #define L1_S_PROTO L1_S_PROTO_xscale #define L1_C_PROTO L1_C_PROTO_xscale #define L2_S_PROTO L2_S_PROTO_xscale #define pmap_copy_page(s, d) pmap_copy_page_xscale((s), (d)) #define pmap_zero_page(d) pmap_zero_page_xscale((d)) #endif /* ARM_NMMUS > 1 */ /* * These macros return various bits based on kernel/user and protection. * Note that the compiler will usually fold these at compile time. */ #define L1_S_PROT(ku, pr) ((((ku) == PTE_USER) ? L1_S_PROT_U : 0) | \ (((pr) & VM_PROT_WRITE) ? L1_S_PROT_W : 0)) #define L2_L_PROT(ku, pr) ((((ku) == PTE_USER) ? L2_L_PROT_U : 0) | \ (((pr) & VM_PROT_WRITE) ? L2_L_PROT_W : 0)) #define L2_S_PROT(ku, pr) ((((ku) == PTE_USER) ? L2_S_PROT_U : 0) | \ (((pr) & VM_PROT_WRITE) ? L2_S_PROT_W : 0)) /* * Macros to test if a mapping is mappable with an L1 Section mapping * or an L2 Large Page mapping. */ #define L1_S_MAPPABLE_P(va, pa, size) \ ((((va) | (pa)) & L1_S_OFFSET) == 0 && (size) >= L1_S_SIZE) #define L2_L_MAPPABLE_P(va, pa, size) \ ((((va) | (pa)) & L2_L_OFFSET) == 0 && (size) >= L2_L_SIZE) #endif /* _KERNEL */ #endif /* _ARM32_PMAP_H_ */