/* $OpenBSD: xform.c,v 1.35 2008/06/09 16:11:36 djm Exp $ */ /* * The authors of this code are John Ioannidis (ji@tla.org), * Angelos D. Keromytis (kermit@csd.uch.gr), * Niels Provos (provos@physnet.uni-hamburg.de) and * Damien Miller (djm@mindrot.org). * * This code was written by John Ioannidis for BSD/OS in Athens, Greece, * in November 1995. * * Ported to OpenBSD and NetBSD, with additional transforms, in December 1996, * by Angelos D. Keromytis. * * Additional transforms and features in 1997 and 1998 by Angelos D. Keromytis * and Niels Provos. * * Additional features in 1999 by Angelos D. Keromytis. * * AES XTS implementation in 2008 by Damien Miller * * Copyright (C) 1995, 1996, 1997, 1998, 1999 by John Ioannidis, * Angelos D. Keromytis and Niels Provos. * * Copyright (C) 2001, Angelos D. Keromytis. * * Copyright (C) 2008, Damien Miller * * Permission to use, copy, and modify this software with or without fee * is hereby granted, provided that this entire notice is included in * all copies of any software which is or includes a copy or * modification of this software. * You may use this code under the GNU public license if you so wish. Please * contribute changes back to the authors under this freer than GPL license * so that we may further the use of strong encryption without limitations to * all. * * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR * PURPOSE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include extern void des_ecb3_encrypt(caddr_t, caddr_t, caddr_t, caddr_t, caddr_t, int); extern void des_ecb_encrypt(caddr_t, caddr_t, caddr_t, int); int des_set_key(caddr_t, caddr_t); int des1_setkey(u_int8_t **, u_int8_t *, int); int des3_setkey(u_int8_t **, u_int8_t *, int); int blf_setkey(u_int8_t **, u_int8_t *, int); int cast5_setkey(u_int8_t **, u_int8_t *, int); int skipjack_setkey(u_int8_t **, u_int8_t *, int); int rijndael128_setkey(u_int8_t **, u_int8_t *, int); int aes_ctr_setkey(u_int8_t **, u_int8_t *, int); int aes_xts_setkey(u_int8_t **, u_int8_t *, int); int null_setkey(u_int8_t **, u_int8_t *, int); void des1_encrypt(caddr_t, u_int8_t *); void des3_encrypt(caddr_t, u_int8_t *); void blf_encrypt(caddr_t, u_int8_t *); void cast5_encrypt(caddr_t, u_int8_t *); void skipjack_encrypt(caddr_t, u_int8_t *); void rijndael128_encrypt(caddr_t, u_int8_t *); void null_encrypt(caddr_t, u_int8_t *); void aes_xts_encrypt(caddr_t, u_int8_t *); void des1_decrypt(caddr_t, u_int8_t *); void des3_decrypt(caddr_t, u_int8_t *); void blf_decrypt(caddr_t, u_int8_t *); void cast5_decrypt(caddr_t, u_int8_t *); void skipjack_decrypt(caddr_t, u_int8_t *); void rijndael128_decrypt(caddr_t, u_int8_t *); void null_decrypt(caddr_t, u_int8_t *); void aes_xts_decrypt(caddr_t, u_int8_t *); void aes_ctr_crypt(caddr_t, u_int8_t *); void des1_zerokey(u_int8_t **); void des3_zerokey(u_int8_t **); void blf_zerokey(u_int8_t **); void cast5_zerokey(u_int8_t **); void skipjack_zerokey(u_int8_t **); void rijndael128_zerokey(u_int8_t **); void aes_ctr_zerokey(u_int8_t **); void aes_xts_zerokey(u_int8_t **); void null_zerokey(u_int8_t **); void aes_ctr_reinit(caddr_t, u_int8_t *); void aes_xts_reinit(caddr_t, u_int8_t *); int MD5Update_int(void *, const u_int8_t *, u_int16_t); int SHA1Update_int(void *, const u_int8_t *, u_int16_t); int RMD160Update_int(void *, const u_int8_t *, u_int16_t); int SHA256_Update_int(void *, const u_int8_t *, u_int16_t); int SHA384_Update_int(void *, const u_int8_t *, u_int16_t); int SHA512_Update_int(void *, const u_int8_t *, u_int16_t); u_int32_t deflate_compress(u_int8_t *, u_int32_t, u_int8_t **); u_int32_t deflate_decompress(u_int8_t *, u_int32_t, u_int8_t **); u_int32_t lzs_dummy(u_int8_t *, u_int32_t, u_int8_t **); /* Helper */ struct aes_xts_ctx; void aes_xts_crypt(struct aes_xts_ctx *, u_int8_t *, u_int); /* Encryption instances */ struct enc_xform enc_xform_des = { CRYPTO_DES_CBC, "DES", 8, 8, 8, 8, des1_encrypt, des1_decrypt, des1_setkey, des1_zerokey, NULL }; struct enc_xform enc_xform_3des = { CRYPTO_3DES_CBC, "3DES", 8, 8, 24, 24, des3_encrypt, des3_decrypt, des3_setkey, des3_zerokey, NULL }; struct enc_xform enc_xform_blf = { CRYPTO_BLF_CBC, "Blowfish", 8, 8, 5, 56 /* 448 bits, max key */, blf_encrypt, blf_decrypt, blf_setkey, blf_zerokey, NULL }; struct enc_xform enc_xform_cast5 = { CRYPTO_CAST_CBC, "CAST-128", 8, 8, 5, 16, cast5_encrypt, cast5_decrypt, cast5_setkey, cast5_zerokey, NULL }; struct enc_xform enc_xform_skipjack = { CRYPTO_SKIPJACK_CBC, "Skipjack", 8, 8, 10, 10, skipjack_encrypt, skipjack_decrypt, skipjack_setkey, skipjack_zerokey, NULL }; struct enc_xform enc_xform_rijndael128 = { CRYPTO_RIJNDAEL128_CBC, "Rijndael-128/AES", 16, 16, 16, 32, rijndael128_encrypt, rijndael128_decrypt, rijndael128_setkey, rijndael128_zerokey, NULL }; struct enc_xform enc_xform_aes_ctr = { CRYPTO_AES_CTR, "AES-CTR", 16, 8, 16+4, 32+4, aes_ctr_crypt, aes_ctr_crypt, aes_ctr_setkey, aes_ctr_zerokey, aes_ctr_reinit }; struct enc_xform enc_xform_aes_xts = { CRYPTO_AES_XTS, "AES-XTS", 16, 8, 32, 64, aes_xts_encrypt, aes_xts_decrypt, aes_xts_setkey, aes_xts_zerokey, aes_xts_reinit }; struct enc_xform enc_xform_arc4 = { CRYPTO_ARC4, "ARC4", 1, 1, 1, 32, NULL, NULL, NULL, NULL, NULL }; struct enc_xform enc_xform_null = { CRYPTO_NULL, "NULL", 4, 0, 0, 256, null_encrypt, null_decrypt, null_setkey, null_zerokey, NULL }; /* Authentication instances */ struct auth_hash auth_hash_hmac_md5_96 = { CRYPTO_MD5_HMAC, "HMAC-MD5", 16, 16, 12, sizeof(MD5_CTX), (void (*) (void *)) MD5Init, MD5Update_int, (void (*) (u_int8_t *, void *)) MD5Final }; struct auth_hash auth_hash_hmac_sha1_96 = { CRYPTO_SHA1_HMAC, "HMAC-SHA1", 20, 20, 12, sizeof(SHA1_CTX), (void (*) (void *)) SHA1Init, SHA1Update_int, (void (*) (u_int8_t *, void *)) SHA1Final }; struct auth_hash auth_hash_hmac_ripemd_160_96 = { CRYPTO_RIPEMD160_HMAC, "HMAC-RIPEMD-160", 20, 20, 12, sizeof(RMD160_CTX), (void (*)(void *)) RMD160Init, RMD160Update_int, (void (*)(u_int8_t *, void *)) RMD160Final }; struct auth_hash auth_hash_hmac_sha2_256_96 = { CRYPTO_SHA2_256_HMAC, "HMAC-SHA2-256", 32, 32, 12, sizeof(SHA256_CTX), (void (*)(void *)) SHA256_Init, SHA256_Update_int, (void (*)(u_int8_t *, void *)) SHA256_Final }; struct auth_hash auth_hash_hmac_sha2_384_96 = { CRYPTO_SHA2_384_HMAC, "HMAC-SHA2-384", 48, 48, 12, sizeof(SHA384_CTX), (void (*)(void *)) SHA384_Init, SHA384_Update_int, (void (*)(u_int8_t *, void *)) SHA384_Final }; struct auth_hash auth_hash_hmac_sha2_512_96 = { CRYPTO_SHA2_512_HMAC, "HMAC-SHA2-512", 64, 64, 12, sizeof(SHA512_CTX), (void (*)(void *)) SHA512_Init, SHA512_Update_int, (void (*)(u_int8_t *, void *)) SHA512_Final }; struct auth_hash auth_hash_key_md5 = { CRYPTO_MD5_KPDK, "Keyed MD5", 0, 16, 16, sizeof(MD5_CTX), (void (*)(void *)) MD5Init, MD5Update_int, (void (*)(u_int8_t *, void *)) MD5Final }; struct auth_hash auth_hash_key_sha1 = { CRYPTO_SHA1_KPDK, "Keyed SHA1", 0, 20, 20, sizeof(SHA1_CTX), (void (*)(void *)) SHA1Init, SHA1Update_int, (void (*)(u_int8_t *, void *)) SHA1Final }; struct auth_hash auth_hash_md5 = { CRYPTO_MD5, "MD5", 0, 16, 16, sizeof(MD5_CTX), (void (*) (void *)) MD5Init, MD5Update_int, (void (*) (u_int8_t *, void *)) MD5Final }; struct auth_hash auth_hash_sha1 = { CRYPTO_SHA1, "SHA1", 0, 20, 20, sizeof(SHA1_CTX), (void (*)(void *)) SHA1Init, SHA1Update_int, (void (*)(u_int8_t *, void *)) SHA1Final }; /* Compression instance */ struct comp_algo comp_algo_deflate = { CRYPTO_DEFLATE_COMP, "Deflate", 90, deflate_compress, deflate_decompress }; struct comp_algo comp_algo_lzs = { CRYPTO_LZS_COMP, "LZS", 90, lzs_dummy, lzs_dummy }; /* * Encryption wrapper routines. */ void des1_encrypt(caddr_t key, u_int8_t *blk) { des_ecb_encrypt(blk, blk, key, 1); } void des1_decrypt(caddr_t key, u_int8_t *blk) { des_ecb_encrypt(blk, blk, key, 0); } int des1_setkey(u_int8_t **sched, u_int8_t *key, int len) { *sched = malloc(128, M_CRYPTO_DATA, M_WAITOK | M_ZERO); if (des_set_key(key, *sched) < 0) { des1_zerokey(sched); return -1; } return 0; } void des1_zerokey(u_int8_t **sched) { bzero(*sched, 128); free(*sched, M_CRYPTO_DATA); *sched = NULL; } void des3_encrypt(caddr_t key, u_int8_t *blk) { des_ecb3_encrypt(blk, blk, key, key + 128, key + 256, 1); } void des3_decrypt(caddr_t key, u_int8_t *blk) { des_ecb3_encrypt(blk, blk, key + 256, key + 128, key, 0); } int des3_setkey(u_int8_t **sched, u_int8_t *key, int len) { *sched = malloc(384, M_CRYPTO_DATA, M_WAITOK | M_ZERO); if (des_set_key(key, *sched) < 0 || des_set_key(key + 8, *sched + 128) < 0 || des_set_key(key + 16, *sched + 256) < 0) { des3_zerokey(sched); return -1; } return 0; } void des3_zerokey(u_int8_t **sched) { bzero(*sched, 384); free(*sched, M_CRYPTO_DATA); *sched = NULL; } void blf_encrypt(caddr_t key, u_int8_t *blk) { blf_ecb_encrypt((blf_ctx *) key, blk, 8); } void blf_decrypt(caddr_t key, u_int8_t *blk) { blf_ecb_decrypt((blf_ctx *) key, blk, 8); } int blf_setkey(u_int8_t **sched, u_int8_t *key, int len) { *sched = malloc(sizeof(blf_ctx), M_CRYPTO_DATA, M_WAITOK | M_ZERO); blf_key((blf_ctx *)*sched, key, len); return 0; } void blf_zerokey(u_int8_t **sched) { bzero(*sched, sizeof(blf_ctx)); free(*sched, M_CRYPTO_DATA); *sched = NULL; } int null_setkey(u_int8_t **sched, u_int8_t *key, int len) { return 0; } void null_zerokey(u_int8_t **sched) { } void null_encrypt(caddr_t key, u_int8_t *blk) { } void null_decrypt(caddr_t key, u_int8_t *blk) { } void cast5_encrypt(caddr_t key, u_int8_t *blk) { cast_encrypt((cast_key *) key, blk, blk); } void cast5_decrypt(caddr_t key, u_int8_t *blk) { cast_decrypt((cast_key *) key, blk, blk); } int cast5_setkey(u_int8_t **sched, u_int8_t *key, int len) { *sched = malloc(sizeof(cast_key), M_CRYPTO_DATA, M_WAITOK | M_ZERO); cast_setkey((cast_key *)*sched, key, len); return 0; } void cast5_zerokey(u_int8_t **sched) { bzero(*sched, sizeof(cast_key)); free(*sched, M_CRYPTO_DATA); *sched = NULL; } void skipjack_encrypt(caddr_t key, u_int8_t *blk) { skipjack_forwards(blk, blk, (u_int8_t **) key); } void skipjack_decrypt(caddr_t key, u_int8_t *blk) { skipjack_backwards(blk, blk, (u_int8_t **) key); } int skipjack_setkey(u_int8_t **sched, u_int8_t *key, int len) { *sched = malloc(10 * sizeof(u_int8_t *), M_CRYPTO_DATA, M_WAITOK | M_ZERO); subkey_table_gen(key, (u_int8_t **) *sched); return 0; } void skipjack_zerokey(u_int8_t **sched) { int k; for (k = 0; k < 10; k++) { if (((u_int8_t **)(*sched))[k]) { bzero(((u_int8_t **)(*sched))[k], 0x100); free(((u_int8_t **)(*sched))[k], M_CRYPTO_DATA); } } bzero(*sched, 10 * sizeof(u_int8_t *)); free(*sched, M_CRYPTO_DATA); *sched = NULL; } void rijndael128_encrypt(caddr_t key, u_int8_t *blk) { rijndael_encrypt((rijndael_ctx *) key, (u_char *) blk, (u_char *) blk); } void rijndael128_decrypt(caddr_t key, u_int8_t *blk) { rijndael_decrypt((rijndael_ctx *) key, (u_char *) blk, (u_char *) blk); } int rijndael128_setkey(u_int8_t **sched, u_int8_t *key, int len) { *sched = malloc(sizeof(rijndael_ctx), M_CRYPTO_DATA, M_WAITOK | M_ZERO); if (rijndael_set_key((rijndael_ctx *)*sched, (u_char *)key, len * 8) < 0) { rijndael128_zerokey(sched); return -1; } return 0; } void rijndael128_zerokey(u_int8_t **sched) { bzero(*sched, sizeof(rijndael_ctx)); free(*sched, M_CRYPTO_DATA); *sched = NULL; } #define AESCTR_NONCESIZE 4 #define AESCTR_IVSIZE 8 #define AESCTR_BLOCKSIZE 16 struct aes_ctr_ctx { u_int32_t ac_ek[4*(AES_MAXROUNDS + 1)]; u_int8_t ac_block[AESCTR_BLOCKSIZE]; int ac_nr; }; void aes_ctr_reinit(caddr_t key, u_int8_t *iv) { struct aes_ctr_ctx *ctx; ctx = (struct aes_ctr_ctx *)key; bcopy(iv, ctx->ac_block + AESCTR_NONCESIZE, AESCTR_IVSIZE); /* reset counter */ bzero(ctx->ac_block + AESCTR_NONCESIZE + AESCTR_IVSIZE, 4); } void aes_ctr_crypt(caddr_t key, u_int8_t *data) { struct aes_ctr_ctx *ctx; u_int8_t keystream[AESCTR_BLOCKSIZE]; int i; ctx = (struct aes_ctr_ctx *)key; /* increment counter */ for (i = AESCTR_BLOCKSIZE - 1; i >= AESCTR_NONCESIZE + AESCTR_IVSIZE; i--) if (++ctx->ac_block[i]) /* continue on overflow */ break; rijndaelEncrypt(ctx->ac_ek, ctx->ac_nr, ctx->ac_block, keystream); for (i = 0; i < AESCTR_BLOCKSIZE; i++) data[i] ^= keystream[i]; } int aes_ctr_setkey(u_int8_t **sched, u_int8_t *key, int len) { struct aes_ctr_ctx *ctx; if (len < AESCTR_NONCESIZE) return -1; *sched = malloc(sizeof(struct aes_ctr_ctx), M_CRYPTO_DATA, M_WAITOK | M_ZERO); ctx = (struct aes_ctr_ctx *)*sched; ctx->ac_nr = rijndaelKeySetupEnc(ctx->ac_ek, (u_char *)key, (len - AESCTR_NONCESIZE) * 8); if (ctx->ac_nr == 0) { aes_ctr_zerokey(sched); return -1; } bcopy(key + len - AESCTR_NONCESIZE, ctx->ac_block, AESCTR_NONCESIZE); return 0; } void aes_ctr_zerokey(u_int8_t **sched) { bzero(*sched, sizeof(struct aes_ctr_ctx)); free(*sched, M_CRYPTO_DATA); *sched = NULL; } #define AES_XTS_BLOCKSIZE 16 #define AES_XTS_IVSIZE 8 #define AES_XTS_ALPHA 0x87 /* GF(2^128) generator polynomial */ struct aes_xts_ctx { rijndael_ctx key1; rijndael_ctx key2; u_int8_t tweak[AES_XTS_BLOCKSIZE]; }; void aes_xts_reinit(caddr_t key, u_int8_t *iv) { struct aes_xts_ctx *ctx = (struct aes_xts_ctx *)key; u_int64_t blocknum; u_int i; /* * Prepare tweak as E_k2(IV). IV is specified as LE representation * of a 64-bit block number which we allow to be passed in directly. */ bcopy(iv, &blocknum, AES_XTS_IVSIZE); for (i = 0; i < AES_XTS_IVSIZE; i++) { ctx->tweak[i] = blocknum & 0xff; blocknum >>= 8; } /* Last 64 bits of IV are always zero */ bzero(ctx->tweak + AES_XTS_IVSIZE, AES_XTS_IVSIZE); rijndael_encrypt(&ctx->key2, ctx->tweak, ctx->tweak); } void aes_xts_crypt(struct aes_xts_ctx *ctx, u_int8_t *data, u_int do_encrypt) { u_int8_t block[AES_XTS_BLOCKSIZE]; u_int i, carry_in, carry_out; for (i = 0; i < AES_XTS_BLOCKSIZE; i++) block[i] = data[i] ^ ctx->tweak[i]; if (do_encrypt) rijndael_encrypt(&ctx->key1, block, data); else rijndael_decrypt(&ctx->key1, block, data); for (i = 0; i < AES_XTS_BLOCKSIZE; i++) data[i] ^= ctx->tweak[i]; /* Exponentiate tweak */ carry_in = 0; for (i = 0; i < AES_XTS_BLOCKSIZE; i++) { carry_out = ctx->tweak[i] & 0x80; ctx->tweak[i] = (ctx->tweak[i] << 1) | (carry_in ? 1 : 0); carry_in = carry_out; } if (carry_in) ctx->tweak[0] ^= AES_XTS_ALPHA; bzero(block, sizeof(block)); } void aes_xts_encrypt(caddr_t key, u_int8_t *data) { aes_xts_crypt((struct aes_xts_ctx *)key, data, 1); } void aes_xts_decrypt(caddr_t key, u_int8_t *data) { aes_xts_crypt((struct aes_xts_ctx *)key, data, 0); } int aes_xts_setkey(u_int8_t **sched, u_int8_t *key, int len) { struct aes_xts_ctx *ctx; if (len != 32 && len != 64) return -1; *sched = malloc(sizeof(struct aes_xts_ctx), M_CRYPTO_DATA, M_WAITOK | M_ZERO); ctx = (struct aes_xts_ctx *)*sched; rijndael_set_key(&ctx->key1, key, len * 4); rijndael_set_key(&ctx->key2, key + (len / 2), len * 4); return 0; } void aes_xts_zerokey(u_int8_t **sched) { bzero(*sched, sizeof(struct aes_xts_ctx)); free(*sched, M_CRYPTO_DATA); *sched = NULL; } /* * And now for auth. */ int RMD160Update_int(void *ctx, const u_int8_t *buf, u_int16_t len) { RMD160Update(ctx, buf, len); return 0; } int MD5Update_int(void *ctx, const u_int8_t *buf, u_int16_t len) { MD5Update(ctx, buf, len); return 0; } int SHA1Update_int(void *ctx, const u_int8_t *buf, u_int16_t len) { SHA1Update(ctx, buf, len); return 0; } int SHA256_Update_int(void *ctx, const u_int8_t *buf, u_int16_t len) { SHA256_Update(ctx, buf, len); return 0; } int SHA384_Update_int(void *ctx, const u_int8_t *buf, u_int16_t len) { SHA384_Update(ctx, buf, len); return 0; } int SHA512_Update_int(void *ctx, const u_int8_t *buf, u_int16_t len) { SHA512_Update(ctx, buf, len); return 0; } /* * And compression */ u_int32_t deflate_compress(u_int8_t *data, u_int32_t size, u_int8_t **out) { return deflate_global(data, size, 0, out); } u_int32_t deflate_decompress(u_int8_t *data, u_int32_t size, u_int8_t **out) { return deflate_global(data, size, 1, out); } u_int32_t lzs_dummy(u_int8_t *data, u_int32_t size, u_int8_t **out) { *out = NULL; return (0); }