/* $OpenBSD: iop.c,v 1.35 2008/06/26 05:42:14 ray Exp $ */ /* $NetBSD: iop.c,v 1.12 2001/03/21 14:27:05 ad Exp $ */ /*- * Copyright (c) 2000, 2001 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Andrew Doran. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Support for I2O IOPs (intelligent I/O processors). */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define POLL(ms, cond) \ do { \ int i; \ for (i = (ms) * 10; i; i--) { \ if (cond) \ break; \ DELAY(100); \ } \ } while (/* CONSTCOND */0); #ifdef I2ODEBUG #define DPRINTF(x) printf x #else #define DPRINTF(x) #endif #ifdef I2OVERBOSE #define IFVERBOSE(x) x #define COMMENT(x) NULL #else #define IFVERBOSE(x) #define COMMENT(x) #endif #define IOP_ICTXHASH_NBUCKETS 16 #define IOP_ICTXHASH(ictx) (&iop_ictxhashtbl[(ictx) & iop_ictxhash]) #define IOP_MAX_SEGS (((IOP_MAX_XFER + PAGE_SIZE - 1) / PAGE_SIZE) + 1) #define IOP_TCTX_SHIFT 12 #define IOP_TCTX_MASK ((1 << IOP_TCTX_SHIFT) - 1) LIST_HEAD(, iop_initiator) *iop_ictxhashtbl; u_long iop_ictxhash; void *iop_sdh; struct i2o_systab *iop_systab; int iop_systab_size; struct cfdriver iop_cd = { NULL, "iop", DV_DULL }; #define IC_CONFIGURE 0x01 #define IC_PRIORITY 0x02 struct iop_class { u_short ic_class; u_short ic_flags; #ifdef I2OVERBOSE const char *ic_caption; #endif } static const iop_class[] = { { I2O_CLASS_EXECUTIVE, 0, COMMENT("executive") }, { I2O_CLASS_DDM, 0, COMMENT("device driver module") }, { I2O_CLASS_RANDOM_BLOCK_STORAGE, IC_CONFIGURE | IC_PRIORITY, IFVERBOSE("random block storage") }, { I2O_CLASS_SEQUENTIAL_STORAGE, IC_CONFIGURE | IC_PRIORITY, IFVERBOSE("sequential storage") }, { I2O_CLASS_LAN, IC_CONFIGURE | IC_PRIORITY, IFVERBOSE("LAN port") }, { I2O_CLASS_WAN, IC_CONFIGURE | IC_PRIORITY, IFVERBOSE("WAN port") }, { I2O_CLASS_FIBRE_CHANNEL_PORT, IC_CONFIGURE, IFVERBOSE("fibrechannel port") }, { I2O_CLASS_FIBRE_CHANNEL_PERIPHERAL, 0, COMMENT("fibrechannel peripheral") }, { I2O_CLASS_SCSI_PERIPHERAL, 0, COMMENT("SCSI peripheral") }, { I2O_CLASS_ATE_PORT, IC_CONFIGURE, IFVERBOSE("ATE port") }, { I2O_CLASS_ATE_PERIPHERAL, 0, COMMENT("ATE peripheral") }, { I2O_CLASS_FLOPPY_CONTROLLER, IC_CONFIGURE, IFVERBOSE("floppy controller") }, { I2O_CLASS_FLOPPY_DEVICE, 0, COMMENT("floppy device") }, { I2O_CLASS_BUS_ADAPTER_PORT, IC_CONFIGURE, IFVERBOSE("bus adapter port" ) }, }; #if defined(I2ODEBUG) && defined(I2OVERBOSE) static const char * const iop_status[] = { "success", "abort (dirty)", "abort (no data transfer)", "abort (partial transfer)", "error (dirty)", "error (no data transfer)", "error (partial transfer)", "undefined error code", "process abort (dirty)", "process abort (no data transfer)", "process abort (partial transfer)", "transaction error", }; #endif static inline u_int32_t iop_inl(struct iop_softc *, int); static inline void iop_outl(struct iop_softc *, int, u_int32_t); void iop_config_interrupts(struct device *); void iop_configure_devices(struct iop_softc *, int, int); void iop_devinfo(int, char *, size_t); int iop_print(void *, const char *); int iop_reconfigure(struct iop_softc *, u_int); void iop_shutdown(void *); int iop_submatch(struct device *, void *, void *); #ifdef notyet int iop_vendor_print(void *, const char *); #endif void iop_adjqparam(struct iop_softc *, int); void iop_create_reconf_thread(void *); int iop_handle_reply(struct iop_softc *, u_int32_t); int iop_hrt_get(struct iop_softc *); int iop_hrt_get0(struct iop_softc *, struct i2o_hrt *, size_t); void iop_intr_event(struct device *, struct iop_msg *, void *); int iop_lct_get0(struct iop_softc *, struct i2o_lct *, size_t, u_int32_t); void iop_msg_poll(struct iop_softc *, struct iop_msg *, int); void iop_msg_wait(struct iop_softc *, struct iop_msg *, int); int iop_ofifo_init(struct iop_softc *); int iop_passthrough(struct iop_softc *, struct ioppt *); int iop_post(struct iop_softc *, u_int32_t *); void iop_reconf_thread(void *); void iop_release_mfa(struct iop_softc *, u_int32_t); int iop_reset(struct iop_softc *); int iop_status_get(struct iop_softc *, int); int iop_systab_set(struct iop_softc *); void iop_tfn_print(struct iop_softc *, struct i2o_fault_notify *); #ifdef I2ODEBUG void iop_reply_print(struct iop_softc *, struct i2o_reply *); #endif cdev_decl(iop); static inline u_int32_t iop_inl(struct iop_softc *sc, int off) { bus_space_barrier(sc->sc_iot, sc->sc_ioh, off, 4, BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ); return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, off)); } static inline void iop_outl(struct iop_softc *sc, int off, u_int32_t val) { bus_space_write_4(sc->sc_iot, sc->sc_ioh, off, val); bus_space_barrier(sc->sc_iot, sc->sc_ioh, off, 4, BUS_SPACE_BARRIER_WRITE); } /* * Initialise the IOP and our interface. */ void iop_init(struct iop_softc *sc, const char *intrstr) { struct iop_msg *im; u_int32_t mask; char ident[64]; int rv, i, nsegs; int state = 0; if (iop_ictxhashtbl == NULL) { iop_ictxhashtbl = hashinit(IOP_ICTXHASH_NBUCKETS, M_DEVBUF, M_NOWAIT, &iop_ictxhash); if (iop_ictxhashtbl == NULL) { printf(": cannot allocate hashtable\n"); return; } } /* Reset the IOP and request status. */ /* Allocate a scratch DMA map for small miscellaneous shared data. */ if (bus_dmamap_create(sc->sc_dmat, PAGE_SIZE, 1, PAGE_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &sc->sc_scr_dmamap) != 0) { printf(": cannot create scratch dmamap\n"); return; } state++; if (bus_dmamem_alloc(sc->sc_dmat, PAGE_SIZE, PAGE_SIZE, 0, sc->sc_scr_seg, 1, &nsegs, BUS_DMA_NOWAIT) != 0) { printf(": cannot alloc scratch dmamem\n"); goto bail_out; } state++; if (bus_dmamem_map(sc->sc_dmat, sc->sc_scr_seg, nsegs, PAGE_SIZE, &sc->sc_scr, 0)) { printf(": cannot map scratch dmamem\n"); goto bail_out; } state++; if (bus_dmamap_load(sc->sc_dmat, sc->sc_scr_dmamap, sc->sc_scr, PAGE_SIZE, NULL, BUS_DMA_NOWAIT)) { printf(": cannot load scratch dmamap\n"); goto bail_out; } state++; if ((rv = iop_reset(sc)) != 0) { printf(": not responding (reset)\n"); goto bail_out; } if ((rv = iop_status_get(sc, 1)) != 0) { printf(": not responding (get status)\n"); goto bail_out; } sc->sc_flags |= IOP_HAVESTATUS; iop_strvis(sc, sc->sc_status.productid, sizeof(sc->sc_status.productid), ident, sizeof(ident)); printf(": <%s>", ident); if (intrstr != NULL) printf(", %s", intrstr); printf("\n"); #ifdef I2ODEBUG printf("%s: orgid=0x%04x version=%d\n", sc->sc_dv.dv_xname, letoh16(sc->sc_status.orgid), (letoh32(sc->sc_status.segnumber) >> 12) & 15); printf("%s: type want have cbase\n", sc->sc_dv.dv_xname); printf("%s: mem %04x %04x %08x\n", sc->sc_dv.dv_xname, letoh32(sc->sc_status.desiredprivmemsize), letoh32(sc->sc_status.currentprivmemsize), letoh32(sc->sc_status.currentprivmembase)); printf("%s: i/o %04x %04x %08x\n", sc->sc_dv.dv_xname, letoh32(sc->sc_status.desiredpriviosize), letoh32(sc->sc_status.currentpriviosize), letoh32(sc->sc_status.currentpriviobase)); #endif sc->sc_maxob = letoh32(sc->sc_status.maxoutboundmframes); if (sc->sc_maxob > IOP_MAX_OUTBOUND) sc->sc_maxob = IOP_MAX_OUTBOUND; sc->sc_maxib = letoh32(sc->sc_status.maxinboundmframes); if (sc->sc_maxib > IOP_MAX_INBOUND) sc->sc_maxib = IOP_MAX_INBOUND; /* Allocate message wrappers. */ im = malloc(sizeof(*im) * sc->sc_maxib, M_DEVBUF, M_NOWAIT | M_ZERO); if (!im) { printf("%s: couldn't allocate message", sc->sc_dv.dv_xname); goto bail_out; } state++; sc->sc_ims = im; SLIST_INIT(&sc->sc_im_freelist); for (i = 0; i < sc->sc_maxib; i++, im++) { rv = bus_dmamap_create(sc->sc_dmat, IOP_MAX_XFER, IOP_MAX_SEGS, IOP_MAX_XFER, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &im->im_xfer[0].ix_map); if (rv != 0) { printf("%s: couldn't create dmamap (%d)", sc->sc_dv.dv_xname, rv); goto bail_out; } im->im_tctx = i; SLIST_INSERT_HEAD(&sc->sc_im_freelist, im, im_chain); } /* Initialize the IOP's outbound FIFO. */ if (iop_ofifo_init(sc) != 0) { printf("%s: unable to init outbound FIFO\n", sc->sc_dv.dv_xname); goto bail_out; } /* Configure shutdown hook before we start any device activity. */ if (iop_sdh == NULL) iop_sdh = shutdownhook_establish(iop_shutdown, NULL); /* Ensure interrupts are enabled at the IOP. */ mask = iop_inl(sc, IOP_REG_INTR_MASK); iop_outl(sc, IOP_REG_INTR_MASK, mask & ~IOP_INTR_OFIFO); #ifdef I2ODEBUG printf("%s: queue depths: inbound %d/%d, outbound %d/%d\n", sc->sc_dv.dv_xname, sc->sc_maxib, letoh32(sc->sc_status.maxinboundmframes), sc->sc_maxob, letoh32(sc->sc_status.maxoutboundmframes)); #endif lockinit(&sc->sc_conflock, PRIBIO, "iopconf", 0, 0); startuphook_establish((void (*)(void *))iop_config_interrupts, sc); return; bail_out: if (state > 4) free(im, M_DEVBUF); if (state > 3) bus_dmamap_unload(sc->sc_dmat, sc->sc_scr_dmamap); if (state > 2) bus_dmamem_unmap(sc->sc_dmat, sc->sc_scr, PAGE_SIZE); if (state > 1) bus_dmamem_free(sc->sc_dmat, sc->sc_scr_seg, nsegs); if (state > 0) bus_dmamap_destroy(sc->sc_dmat, sc->sc_scr_dmamap); } /* * Perform autoconfiguration tasks. */ void iop_config_interrupts(struct device *self) { struct iop_softc *sc, *iop; struct i2o_systab_entry *ste; int rv, i, niop; sc = (struct iop_softc *)self; LIST_INIT(&sc->sc_iilist); printf("%s: configuring...\n", sc->sc_dv.dv_xname); if (iop_hrt_get(sc) != 0) { printf("%s: unable to retrieve HRT\n", sc->sc_dv.dv_xname); return; } /* * Build the system table. */ if (iop_systab == NULL) { for (i = 0, niop = 0; i < iop_cd.cd_ndevs; i++) { iop = (struct iop_softc *)device_lookup(&iop_cd, i); if (iop == NULL) continue; if ((iop->sc_flags & IOP_HAVESTATUS) == 0) continue; if (iop_status_get(iop, 1) != 0) { printf("%s: unable to retrieve status\n", sc->sc_dv.dv_xname); iop->sc_flags &= ~IOP_HAVESTATUS; continue; } niop++; } if (niop == 0) return; i = sizeof(struct i2o_systab_entry) * (niop - 1) + sizeof(struct i2o_systab); iop_systab_size = i; iop_systab = malloc(i, M_DEVBUF, M_NOWAIT | M_ZERO); if (!iop_systab) return; iop_systab->numentries = niop; iop_systab->version = I2O_VERSION_11; for (i = 0, ste = iop_systab->entry; i < iop_cd.cd_ndevs; i++) { iop = (struct iop_softc *)device_lookup(&iop_cd, i); if (iop == NULL) continue; if ((iop->sc_flags & IOP_HAVESTATUS) == 0) continue; ste->orgid = iop->sc_status.orgid; ste->iopid = iop->sc_dv.dv_unit + 2; ste->segnumber = htole32(letoh32(iop->sc_status.segnumber) & ~4095); ste->iopcaps = iop->sc_status.iopcaps; ste->inboundmsgframesize = iop->sc_status.inboundmframesize; ste->inboundmsgportaddresslow = htole32(iop->sc_memaddr + IOP_REG_IFIFO); ste++; } } /* * Post the system table to the IOP and bring it to the OPERATIONAL * state. */ if (iop_systab_set(sc) != 0) { printf("%s: unable to set system table\n", sc->sc_dv.dv_xname); return; } if (iop_simple_cmd(sc, I2O_TID_IOP, I2O_EXEC_SYS_ENABLE, IOP_ICTX, 1, 30000) != 0) { printf("%s: unable to enable system\n", sc->sc_dv.dv_xname); return; } /* * Set up an event handler for this IOP. */ sc->sc_eventii.ii_dv = self; sc->sc_eventii.ii_intr = iop_intr_event; sc->sc_eventii.ii_flags = II_DISCARD | II_UTILITY; sc->sc_eventii.ii_tid = I2O_TID_IOP; iop_initiator_register(sc, &sc->sc_eventii); rv = iop_util_eventreg(sc, &sc->sc_eventii, I2O_EVENT_EXEC_RESOURCE_LIMITS | I2O_EVENT_EXEC_CONNECTION_FAIL | I2O_EVENT_EXEC_ADAPTER_FAULT | I2O_EVENT_EXEC_POWER_FAIL | I2O_EVENT_EXEC_RESET_PENDING | I2O_EVENT_EXEC_RESET_IMMINENT | I2O_EVENT_EXEC_HARDWARE_FAIL | I2O_EVENT_EXEC_XCT_CHANGE | I2O_EVENT_EXEC_DDM_AVAILIBILITY | I2O_EVENT_GEN_DEVICE_RESET | I2O_EVENT_GEN_STATE_CHANGE | I2O_EVENT_GEN_GENERAL_WARNING); if (rv != 0) { printf("%s: unable to register for events", sc->sc_dv.dv_xname); return; } #ifdef notyet /* Attempt to match and attach a product-specific extension. */ ia.ia_class = I2O_CLASS_ANY; ia.ia_tid = I2O_TID_IOP; config_found_sm(self, &ia, iop_vendor_print, iop_submatch); #endif lockmgr(&sc->sc_conflock, LK_EXCLUSIVE, NULL); if ((rv = iop_reconfigure(sc, 0)) == -1) { printf("%s: configure failed (%d)\n", sc->sc_dv.dv_xname, rv); return; } lockmgr(&sc->sc_conflock, LK_RELEASE, NULL); kthread_create_deferred(iop_create_reconf_thread, sc); } /* * Create the reconfiguration thread. Called after the standard kernel * threads have been created. */ void iop_create_reconf_thread(void *cookie) { struct iop_softc *sc; int rv; sc = cookie; sc->sc_flags |= IOP_ONLINE; rv = kthread_create(iop_reconf_thread, sc, &sc->sc_reconf_proc, "%s", sc->sc_dv.dv_xname); if (rv != 0) { printf("%s: unable to create reconfiguration thread (%d)", sc->sc_dv.dv_xname, rv); return; } } /* * Reconfiguration thread; listens for LCT change notification, and * initiates re-configuration if received. */ void iop_reconf_thread(void *cookie) { struct iop_softc *sc = cookie; struct i2o_lct lct; u_int32_t chgind; int rv; chgind = sc->sc_chgind + 1; for (;;) { DPRINTF(("%s: async reconfig: requested 0x%08x\n", sc->sc_dv.dv_xname, chgind)); rv = iop_lct_get0(sc, &lct, sizeof(lct), chgind); DPRINTF(("%s: async reconfig: notified (0x%08x, %d)\n", sc->sc_dv.dv_xname, letoh32(lct.changeindicator), rv)); if (rv == 0 && lockmgr(&sc->sc_conflock, LK_EXCLUSIVE, NULL) == 0) { iop_reconfigure(sc, letoh32(lct.changeindicator)); chgind = sc->sc_chgind + 1; lockmgr(&sc->sc_conflock, LK_RELEASE, NULL); } tsleep(iop_reconf_thread, PWAIT, "iopzzz", hz * 5); } } /* * Reconfigure: find new and removed devices. */ int iop_reconfigure(struct iop_softc *sc, u_int chgind) { struct iop_msg *im; struct i2o_hba_bus_scan mf; struct i2o_lct_entry *le; struct iop_initiator *ii, *nextii; int rv, tid, i; /* * If the reconfiguration request isn't the result of LCT change * notification, then be more thorough: ask all bus ports to scan * their busses. Wait up to 5 minutes for each bus port to complete * the request. */ if (chgind == 0) { if ((rv = iop_lct_get(sc)) != 0) { DPRINTF(("iop_reconfigure: unable to read LCT\n")); return (rv); } le = sc->sc_lct->entry; for (i = 0; i < sc->sc_nlctent; i++, le++) { if ((letoh16(le->classid) & I2O_CLASS_MASK) != I2O_CLASS_BUS_ADAPTER_PORT) continue; tid = letoh16(le->localtid) & I2O_CLASS_MASK; im = iop_msg_alloc(sc, NULL, IM_WAIT); mf.msgflags = I2O_MSGFLAGS(i2o_hba_bus_scan); mf.msgfunc = I2O_MSGFUNC(tid, I2O_HBA_BUS_SCAN); mf.msgictx = IOP_ICTX; mf.msgtctx = im->im_tctx; DPRINTF(("%s: scanning bus %d\n", sc->sc_dv.dv_xname, tid)); rv = iop_msg_post(sc, im, &mf, 5*60*1000); iop_msg_free(sc, im); #ifdef I2ODEBUG if (rv != 0) printf("%s: bus scan failed, status =%d\n", sc->sc_dv.dv_xname, rv); #endif } } else if (chgind <= sc->sc_chgind) { DPRINTF(("%s: LCT unchanged (async)\n", sc->sc_dv.dv_xname)); return (0); } /* Re-read the LCT and determine if it has changed. */ if ((rv = iop_lct_get(sc)) != 0) { DPRINTF(("iop_reconfigure: unable to re-read LCT\n")); return (rv); } DPRINTF(("%s: %d LCT entries\n", sc->sc_dv.dv_xname, sc->sc_nlctent)); chgind = letoh32(sc->sc_lct->changeindicator); if (chgind == sc->sc_chgind) { DPRINTF(("%s: LCT unchanged\n", sc->sc_dv.dv_xname)); return (0); } DPRINTF(("%s: LCT changed\n", sc->sc_dv.dv_xname)); sc->sc_chgind = chgind; if (sc->sc_tidmap != NULL) free(sc->sc_tidmap, M_DEVBUF); sc->sc_tidmap = malloc(sc->sc_nlctent * sizeof(struct iop_tidmap), M_DEVBUF, M_NOWAIT | M_ZERO); if (!sc->sc_tidmap) { DPRINTF(("iop_reconfigure: out of memory\n")); return (ENOMEM); } /* Allow 1 queued command per device while we're configuring. */ iop_adjqparam(sc, 1); /* * Match and attach child devices. We configure high-level devices * first so that any claims will propagate throughout the LCT, * hopefully masking off aliased devices as a result. * * Re-reading the LCT at this point is a little dangerous, but we'll * trust the IOP (and the operator) to behave itself... */ iop_configure_devices(sc, IC_CONFIGURE | IC_PRIORITY, IC_CONFIGURE | IC_PRIORITY); if ((rv = iop_lct_get(sc)) != 0) DPRINTF(("iop_reconfigure: unable to re-read LCT\n")); iop_configure_devices(sc, IC_CONFIGURE | IC_PRIORITY, IC_CONFIGURE); for (ii = LIST_FIRST(&sc->sc_iilist); ii != NULL; ii = nextii) { nextii = LIST_NEXT(ii, ii_list); /* Detach devices that were configured, but are now gone. */ for (i = 0; i < sc->sc_nlctent; i++) if (ii->ii_tid == sc->sc_tidmap[i].it_tid) break; if (i == sc->sc_nlctent || (sc->sc_tidmap[i].it_flags & IT_CONFIGURED) == 0) config_detach(ii->ii_dv, DETACH_FORCE); /* * Tell initiators that existed before the re-configuration * to re-configure. */ if (ii->ii_reconfig == NULL) continue; if ((rv = (*ii->ii_reconfig)(ii->ii_dv)) != 0) printf("%s: %s failed reconfigure (%d)\n", sc->sc_dv.dv_xname, ii->ii_dv->dv_xname, rv); } /* Re-adjust queue parameters and return. */ if (sc->sc_nii != 0) iop_adjqparam(sc, (sc->sc_maxib - sc->sc_nuii - IOP_MF_RESERVE) / sc->sc_nii); return (0); } /* * Configure I2O devices into the system. */ void iop_configure_devices(struct iop_softc *sc, int mask, int maskval) { struct iop_attach_args ia; struct iop_initiator *ii; const struct i2o_lct_entry *le; struct device *dv; int i, j, nent; u_int usertid; nent = sc->sc_nlctent; for (i = 0, le = sc->sc_lct->entry; i < nent; i++, le++) { sc->sc_tidmap[i].it_tid = letoh16(le->localtid) & I2O_LCT_ENTRY_TID_MASK; /* Ignore the device if it's in use. */ usertid = letoh32(le->usertid) & I2O_LCT_ENTRY_TID_MASK; if (usertid != I2O_TID_NONE && usertid != I2O_TID_HOST) continue; ia.ia_class = letoh16(le->classid) & I2O_CLASS_MASK; ia.ia_tid = sc->sc_tidmap[i].it_tid; /* Ignore uninteresting devices. */ for (j = 0; j < sizeof(iop_class) / sizeof(iop_class[0]); j++) if (iop_class[j].ic_class == ia.ia_class) break; if (j < sizeof(iop_class) / sizeof(iop_class[0]) && (iop_class[j].ic_flags & mask) != maskval) continue; /* * Try to configure the device only if it's not already * configured. */ LIST_FOREACH(ii, &sc->sc_iilist, ii_list) { if (ia.ia_tid == ii->ii_tid) { sc->sc_tidmap[i].it_flags |= IT_CONFIGURED; strlcpy(sc->sc_tidmap[i].it_dvname, ii->ii_dv->dv_xname, sizeof sc->sc_tidmap[i].it_dvname); break; } } if (ii != NULL) continue; dv = config_found_sm(&sc->sc_dv, &ia, iop_print, iop_submatch); if (dv != NULL) { sc->sc_tidmap[i].it_flags |= IT_CONFIGURED; strlcpy(sc->sc_tidmap[i].it_dvname, dv->dv_xname, sizeof sc->sc_tidmap[i].it_dvname); } } } /* * Adjust queue parameters for all child devices. */ void iop_adjqparam(struct iop_softc *sc, int mpi) { struct iop_initiator *ii; LIST_FOREACH(ii, &sc->sc_iilist, ii_list) if (ii->ii_adjqparam != NULL) (*ii->ii_adjqparam)(ii->ii_dv, mpi); } void iop_devinfo(int class, char *devinfo, size_t di_len) { #ifdef I2OVERBOSE int i; for (i = 0; i < sizeof(iop_class) / sizeof(iop_class[0]); i++) if (class == iop_class[i].ic_class) break; if (i == sizeof(iop_class) / sizeof(iop_class[0])) snprintf(devinfo, di_len, "device (class 0x%x)", class); else strlcpy(devinfo, iop_class[i].ic_caption, di_len); #else snprintf(devinfo, di_len, "device (class 0x%x)", class); #endif } int iop_print(void *aux, const char *pnp) { struct iop_attach_args *ia; char devinfo[256]; ia = aux; if (pnp != NULL) { iop_devinfo(ia->ia_class, devinfo, sizeof devinfo); printf("%s at %s", devinfo, pnp); } printf(" tid %d", ia->ia_tid); return (UNCONF); } #ifdef notyet int iop_vendor_print(void *aux, const char *pnp) { if (pnp != NULL) printf("vendor specific extension at %s", pnp); return (UNCONF); } #endif int iop_submatch(struct device *parent, void *vcf, void *aux) { struct cfdata *cf = vcf; struct iop_attach_args *ia; ia = aux; if (cf->iopcf_tid != IOPCF_TID_DEFAULT && cf->iopcf_tid != ia->ia_tid) return (0); return ((*cf->cf_attach->ca_match)(parent, cf, aux)); } /* * Shut down all configured IOPs. */ void iop_shutdown(void *junk) { struct iop_softc *sc; int i; printf("shutting down iop devices..."); for (i = 0; i < iop_cd.cd_ndevs; i++) { if (!(sc = (struct iop_softc *)device_lookup(&iop_cd, i))) continue; if ((sc->sc_flags & IOP_ONLINE) == 0) continue; iop_simple_cmd(sc, I2O_TID_IOP, I2O_EXEC_SYS_QUIESCE, IOP_ICTX, 0, 5000); if (letoh16(sc->sc_status.orgid) != I2O_ORG_AMI) { /* * Some AMI firmware revisions will go to sleep and * never come back after this. */ iop_simple_cmd(sc, I2O_TID_IOP, I2O_EXEC_IOP_CLEAR, IOP_ICTX, 0, 1000); } } /* Wait. Some boards could still be flushing, stupidly enough. */ delay(5000*1000); printf(" done.\n"); } /* * Retrieve IOP status. */ int iop_status_get(struct iop_softc *sc, int nosleep) { struct i2o_exec_status_get mf; paddr_t pa = sc->sc_scr_seg->ds_addr; struct i2o_status *st = (struct i2o_status *)sc->sc_scr; int rv; mf.msgflags = I2O_MSGFLAGS(i2o_exec_status_get); mf.msgfunc = I2O_MSGFUNC(I2O_TID_IOP, I2O_EXEC_STATUS_GET); mf.reserved[0] = 0; mf.reserved[1] = 0; mf.reserved[2] = 0; mf.reserved[3] = 0; mf.addrlow = pa & ~(u_int32_t)0; mf.addrhigh = sizeof pa > sizeof mf.addrlow ? pa >> 32 : 0; mf.length = sizeof(*st); bzero(st, sizeof(*st)); bus_dmamap_sync(sc->sc_dmat, sc->sc_scr_dmamap, 0, sizeof(*st), BUS_DMASYNC_PREREAD); if ((rv = iop_post(sc, (u_int32_t *)&mf))) return (rv); /* XXX */ POLL(2500, (bus_dmamap_sync(sc->sc_dmat, sc->sc_scr_dmamap, 0, sizeof(*st), BUS_DMASYNC_POSTREAD), st->syncbyte == 0xff)); if (st->syncbyte != 0xff) return (EIO); bcopy(st, &sc->sc_status, sizeof(sc->sc_status)); return (0); } /* * Initialize and populate the IOP's outbound FIFO. */ int iop_ofifo_init(struct iop_softc *sc) { bus_addr_t addr; bus_dma_segment_t seg; struct i2o_exec_outbound_init *mf; u_int32_t mb[IOP_MAX_MSG_SIZE / sizeof(u_int32_t)]; u_int32_t *sw = (u_int32_t *)sc->sc_scr; int i, rseg, rv; mf = (struct i2o_exec_outbound_init *)mb; mf->msgflags = I2O_MSGFLAGS(i2o_exec_outbound_init); mf->msgfunc = I2O_MSGFUNC(I2O_TID_IOP, I2O_EXEC_OUTBOUND_INIT); mf->msgictx = IOP_ICTX; mf->msgtctx = 0; mf->pagesize = PAGE_SIZE; mf->flags = IOP_INIT_CODE | ((IOP_MAX_MSG_SIZE >> 2) << 16); mb[sizeof(*mf) / sizeof(u_int32_t) + 0] = sizeof(*sw) | I2O_SGL_SIMPLE | I2O_SGL_END_BUFFER | I2O_SGL_END; mb[sizeof(*mf) / sizeof(u_int32_t) + 1] = sc->sc_scr_seg->ds_addr; mb[0] += 2 << 16; *sw = 0; bus_dmamap_sync(sc->sc_dmat, sc->sc_scr_dmamap, 0, sizeof(*sw), BUS_DMASYNC_PREREAD); /* * The I2O spec says that there are two SGLs: one for the status * word, and one for a list of discarded MFAs. It continues to say * that if you don't want to get the list of MFAs, an IGNORE SGL is * necessary; this isn't the case (and is in fact a bad thing). */ if ((rv = iop_post(sc, mb))) return (rv); /* XXX */ POLL(5000, (bus_dmamap_sync(sc->sc_dmat, sc->sc_scr_dmamap, 0, sizeof(*sw), BUS_DMASYNC_POSTREAD), *sw == htole32(I2O_EXEC_OUTBOUND_INIT_COMPLETE))); if (*sw != htole32(I2O_EXEC_OUTBOUND_INIT_COMPLETE)) { printf("%s: outbound FIFO init failed (%d)\n", sc->sc_dv.dv_xname, letoh32(*sw)); return (EIO); } /* Allocate DMA safe memory for the reply frames. */ if (sc->sc_rep_phys == 0) { sc->sc_rep_size = sc->sc_maxob * IOP_MAX_MSG_SIZE; rv = bus_dmamem_alloc(sc->sc_dmat, sc->sc_rep_size, PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT); if (rv != 0) { printf("%s: dma alloc = %d\n", sc->sc_dv.dv_xname, rv); return (rv); } rv = bus_dmamem_map(sc->sc_dmat, &seg, rseg, sc->sc_rep_size, &sc->sc_rep, BUS_DMA_NOWAIT | BUS_DMA_COHERENT); if (rv != 0) { printf("%s: dma map = %d\n", sc->sc_dv.dv_xname, rv); return (rv); } rv = bus_dmamap_create(sc->sc_dmat, sc->sc_rep_size, 1, sc->sc_rep_size, 0, BUS_DMA_NOWAIT, &sc->sc_rep_dmamap); if (rv != 0) { printf("%s: dma create = %d\n", sc->sc_dv.dv_xname, rv); return (rv); } rv = bus_dmamap_load(sc->sc_dmat, sc->sc_rep_dmamap, sc->sc_rep, sc->sc_rep_size, NULL, BUS_DMA_NOWAIT); if (rv != 0) { printf("%s: dma load = %d\n", sc->sc_dv.dv_xname, rv); return (rv); } sc->sc_rep_phys = sc->sc_rep_dmamap->dm_segs[0].ds_addr; } /* Populate the outbound FIFO. */ for (i = sc->sc_maxob, addr = sc->sc_rep_phys; i != 0; i--) { iop_outl(sc, IOP_REG_OFIFO, (u_int32_t)addr); addr += IOP_MAX_MSG_SIZE; } return (0); } /* * Read the specified number of bytes from the IOP's hardware resource table. */ int iop_hrt_get0(struct iop_softc *sc, struct i2o_hrt *hrt, size_t size) { struct iop_msg *im; struct i2o_exec_hrt_get *mf; u_int32_t mb[IOP_MAX_MSG_SIZE / sizeof(u_int32_t)]; int rv; im = iop_msg_alloc(sc, NULL, IM_WAIT); mf = (struct i2o_exec_hrt_get *)mb; mf->msgflags = I2O_MSGFLAGS(i2o_exec_hrt_get); mf->msgfunc = I2O_MSGFUNC(I2O_TID_IOP, I2O_EXEC_HRT_GET); mf->msgictx = IOP_ICTX; mf->msgtctx = im->im_tctx; iop_msg_map(sc, im, mb, hrt, size, 0); rv = iop_msg_post(sc, im, mb, 30000); iop_msg_unmap(sc, im); iop_msg_free(sc, im); return (rv); } /* * Read the IOP's hardware resource table. */ int iop_hrt_get(struct iop_softc *sc) { struct i2o_hrt hrthdr, *hrt; size_t size; int rv; rv = iop_hrt_get0(sc, &hrthdr, sizeof(hrthdr)); if (rv != 0) return (rv); DPRINTF(("%s: %d hrt entries\n", sc->sc_dv.dv_xname, letoh16(hrthdr.numentries))); size = sizeof(struct i2o_hrt) + (letoh16(hrthdr.numentries) - 1) * sizeof(struct i2o_hrt_entry); hrt = (struct i2o_hrt *)malloc(size, M_DEVBUF, M_NOWAIT); if (!hrt) return (ENOMEM); if ((rv = iop_hrt_get0(sc, hrt, size)) != 0) { free(hrt, M_DEVBUF); return (rv); } if (sc->sc_hrt != NULL) free(sc->sc_hrt, M_DEVBUF); sc->sc_hrt = hrt; return (0); } /* * Request the specified number of bytes from the IOP's logical * configuration table. If a change indicator is specified, this * is a verbatim notification request, so the caller is prepared * to wait indefinitely. */ int iop_lct_get0(struct iop_softc *sc, struct i2o_lct *lct, size_t size, u_int32_t chgind) { struct iop_msg *im; struct i2o_exec_lct_notify *mf; int rv; u_int32_t mb[IOP_MAX_MSG_SIZE / sizeof(u_int32_t)]; im = iop_msg_alloc(sc, NULL, IM_WAIT); memset(lct, 0, size); mf = (struct i2o_exec_lct_notify *)mb; mf->msgflags = I2O_MSGFLAGS(i2o_exec_lct_notify); mf->msgfunc = I2O_MSGFUNC(I2O_TID_IOP, I2O_EXEC_LCT_NOTIFY); mf->msgictx = IOP_ICTX; mf->msgtctx = im->im_tctx; mf->classid = I2O_CLASS_ANY; mf->changeindicator = chgind; #ifdef I2ODEBUG printf("iop_lct_get0: reading LCT"); if (chgind != 0) printf(" (async)"); printf("\n"); #endif iop_msg_map(sc, im, mb, lct, size, 0); rv = iop_msg_post(sc, im, mb, (chgind == 0 ? 120*1000 : 0)); iop_msg_unmap(sc, im); iop_msg_free(sc, im); return (rv); } /* * Read the IOP's logical configuration table. */ int iop_lct_get(struct iop_softc *sc) { size_t esize, size; int rv; struct i2o_lct *lct; esize = letoh32(sc->sc_status.expectedlctsize); lct = (struct i2o_lct *)malloc(esize, M_DEVBUF, M_WAITOK); if (lct == NULL) return (ENOMEM); if ((rv = iop_lct_get0(sc, lct, esize, 0)) != 0) { free(lct, M_DEVBUF); return (rv); } size = letoh16(lct->tablesize) << 2; if (esize != size) { free(lct, M_DEVBUF); lct = (struct i2o_lct *)malloc(size, M_DEVBUF, M_WAITOK); if (lct == NULL) return (ENOMEM); if ((rv = iop_lct_get0(sc, lct, size, 0)) != 0) { free(lct, M_DEVBUF); return (rv); } } /* Swap in the new LCT. */ if (sc->sc_lct != NULL) free(sc->sc_lct, M_DEVBUF); sc->sc_lct = lct; sc->sc_nlctent = ((letoh16(sc->sc_lct->tablesize) << 2) - sizeof(struct i2o_lct) + sizeof(struct i2o_lct_entry)) / sizeof(struct i2o_lct_entry); return (0); } /* * Request the specified parameter group from the target. If an initiator * is specified (a) don't wait for the operation to complete, but instead * let the initiator's interrupt handler deal with the reply and (b) place a * pointer to the parameter group op in the wrapper's `im_dvcontext' field. */ int iop_param_op(struct iop_softc *sc, int tid, struct iop_initiator *ii, int write, int group, void *buf, size_t size) { struct iop_msg *im; struct i2o_util_params_op *mf; struct i2o_reply *rf; int rv, func, op; struct iop_pgop *pgop; u_int32_t mb[IOP_MAX_MSG_SIZE / sizeof(u_int32_t)]; im = iop_msg_alloc(sc, ii, (ii == NULL ? IM_WAIT : 0) | IM_NOSTATUS); if ((pgop = malloc(sizeof(*pgop), M_DEVBUF, M_WAITOK)) == NULL) { iop_msg_free(sc, im); return (ENOMEM); } if ((rf = malloc(sizeof(*rf), M_DEVBUF, M_WAITOK)) == NULL) { iop_msg_free(sc, im); free(pgop, M_DEVBUF); return (ENOMEM); } im->im_dvcontext = pgop; im->im_rb = rf; if (write) { func = I2O_UTIL_PARAMS_SET; op = I2O_PARAMS_OP_FIELD_SET; } else { func = I2O_UTIL_PARAMS_GET; op = I2O_PARAMS_OP_FIELD_GET; } mf = (struct i2o_util_params_op *)mb; mf->msgflags = I2O_MSGFLAGS(i2o_util_params_op); mf->msgfunc = I2O_MSGFUNC(tid, func); mf->msgictx = IOP_ICTX; mf->msgtctx = im->im_tctx; mf->flags = 0; pgop->olh.count = htole16(1); pgop->olh.reserved = htole16(0); pgop->oat.operation = htole16(op); pgop->oat.fieldcount = htole16(0xffff); pgop->oat.group = htole16(group); memset(buf, 0, size); iop_msg_map(sc, im, mb, pgop, sizeof(*pgop), 1); iop_msg_map(sc, im, mb, buf, size, write); rv = iop_msg_post(sc, im, mb, (ii == NULL ? 30000 : 0)); /* Detect errors; let partial transfers to count as success. */ if (ii == NULL && rv == 0) { if (rf->reqstatus == I2O_STATUS_ERROR_PARTIAL_XFER && rf->detail == htole16(I2O_DSC_UNKNOWN_ERROR)) rv = 0; else rv = (rf->reqstatus != 0 ? EIO : 0); } if (ii == NULL || rv != 0) { iop_msg_unmap(sc, im); iop_msg_free(sc, im); free(pgop, M_DEVBUF); free(rf, M_DEVBUF); } return (rv); } /* * Execute a simple command (no parameters). */ int iop_simple_cmd(struct iop_softc *sc, int tid, int function, int ictx, int async, int timo) { struct iop_msg *im; struct i2o_msg mf; int rv, fl; fl = (async != 0 ? IM_WAIT : IM_POLL); im = iop_msg_alloc(sc, NULL, fl); mf.msgflags = I2O_MSGFLAGS(i2o_msg); mf.msgfunc = I2O_MSGFUNC(tid, function); mf.msgictx = ictx; mf.msgtctx = im->im_tctx; rv = iop_msg_post(sc, im, &mf, timo); iop_msg_free(sc, im); return (rv); } /* * Post the system table to the IOP. */ int iop_systab_set(struct iop_softc *sc) { struct i2o_exec_sys_tab_set *mf; struct iop_msg *im; bus_space_handle_t bsh; bus_addr_t boo; u_int32_t mema[2], ioa[2]; int rv; u_int32_t mb[IOP_MAX_MSG_SIZE / sizeof(u_int32_t)]; im = iop_msg_alloc(sc, NULL, IM_WAIT); mf = (struct i2o_exec_sys_tab_set *)mb; mf->msgflags = I2O_MSGFLAGS(i2o_exec_sys_tab_set); mf->msgfunc = I2O_MSGFUNC(I2O_TID_IOP, I2O_EXEC_SYS_TAB_SET); mf->msgictx = IOP_ICTX; mf->msgtctx = im->im_tctx; mf->iopid = (sc->sc_dv.dv_unit + 2) << 12; mf->segnumber = 0; mema[1] = sc->sc_status.desiredprivmemsize; ioa[1] = sc->sc_status.desiredpriviosize; if (mema[1] != 0) { /* * XXX This will waste virtual memory. We need a flag to tell * bus_space_alloc to just reserve, not actually map the area. */ rv = bus_space_alloc(sc->sc_bus_memt, 0, 0xffffffff, letoh32(mema[1]), PAGE_SIZE, 0, 0, &boo, &bsh); mema[0] = htole32(boo); if (rv != 0) { printf("%s: can't alloc priv mem space, err = %d\n", sc->sc_dv.dv_xname, rv); mema[0] = 0; mema[1] = 0; } } if (ioa[1] != 0) { /* * XXX This will potentially waste virtual memory. We * need a flag to tell bus_space_alloc to just * reserve, not actually map the area. */ rv = bus_space_alloc(sc->sc_bus_iot, 0, 0xffff, letoh32(ioa[1]), 0, 0, 0, &boo, &bsh); ioa[0] = htole32(boo); if (rv != 0) { printf("%s: can't alloc priv i/o space, err = %d\n", sc->sc_dv.dv_xname, rv); ioa[0] = 0; ioa[1] = 0; } } iop_msg_map(sc, im, mb, iop_systab, iop_systab_size, 1); iop_msg_map(sc, im, mb, mema, sizeof(mema), 1); iop_msg_map(sc, im, mb, ioa, sizeof(ioa), 1); rv = iop_msg_post(sc, im, mb, 5000); iop_msg_unmap(sc, im); iop_msg_free(sc, im); return (rv); } /* * Reset the IOP. Must be called with interrupts disabled. */ int iop_reset(struct iop_softc *sc) { struct i2o_exec_iop_reset mf; paddr_t pa = sc->sc_scr_seg->ds_addr; u_int32_t *sw = (u_int32_t *)sc->sc_scr; u_int32_t mfa; int rv = 0; mf.msgflags = I2O_MSGFLAGS(i2o_exec_iop_reset); mf.msgfunc = I2O_MSGFUNC(I2O_TID_IOP, I2O_EXEC_IOP_RESET); mf.reserved[0] = 0; mf.reserved[1] = 0; mf.reserved[2] = 0; mf.reserved[3] = 0; mf.statuslow = pa & ~(u_int32_t)0; mf.statushigh = sizeof pa > sizeof mf.statuslow ? pa >> 32 : 0; *sw = htole32(0); bus_dmamap_sync(sc->sc_dmat, sc->sc_scr_dmamap, 0, sizeof(*sw), BUS_DMASYNC_PREREAD); if ((rv = iop_post(sc, (u_int32_t *)&mf))) return (rv); /* XXX */ POLL(2500, (bus_dmamap_sync(sc->sc_dmat, sc->sc_scr_dmamap, 0, sizeof(*sw), BUS_DMASYNC_POSTREAD), *sw != htole32(0))); if (*sw != htole32(I2O_RESET_IN_PROGRESS)) { printf("%s: reset rejected, status 0x%x\n", sc->sc_dv.dv_xname, letoh32(*sw)); return (EIO); } /* * IOP is now in the INIT state. Wait no more than 10 seconds for * the inbound queue to become responsive. */ POLL(10000, (mfa = iop_inl(sc, IOP_REG_IFIFO)) != IOP_MFA_EMPTY); if (mfa == IOP_MFA_EMPTY) { printf("%s: reset failed\n", sc->sc_dv.dv_xname); return (EIO); } iop_release_mfa(sc, mfa); return (0); } /* * Register a new initiator. Must be called with the configuration lock * held. */ void iop_initiator_register(struct iop_softc *sc, struct iop_initiator *ii) { static int ictxgen; int s; /* 0 is reserved (by us) for system messages. */ ii->ii_ictx = ++ictxgen; /* * `Utility initiators' don't make it onto the per-IOP initiator list * (which is used only for configuration), but do get one slot on * the inbound queue. */ if ((ii->ii_flags & II_UTILITY) == 0) { LIST_INSERT_HEAD(&sc->sc_iilist, ii, ii_list); sc->sc_nii++; } else sc->sc_nuii++; s = splbio(); LIST_INSERT_HEAD(IOP_ICTXHASH(ii->ii_ictx), ii, ii_hash); splx(s); } /* * Unregister an initiator. Must be called with the configuration lock * held. */ void iop_initiator_unregister(struct iop_softc *sc, struct iop_initiator *ii) { int s; if ((ii->ii_flags & II_UTILITY) == 0) { LIST_REMOVE(ii, ii_list); sc->sc_nii--; } else sc->sc_nuii--; s = splbio(); LIST_REMOVE(ii, ii_hash); splx(s); } /* * Handle a reply frame from the IOP. */ int iop_handle_reply(struct iop_softc *sc, u_int32_t rmfa) { struct iop_msg *im; struct i2o_reply *rb; struct i2o_fault_notify *fn; struct iop_initiator *ii; u_int off, ictx, tctx, status, size; off = (int)(rmfa - sc->sc_rep_phys); rb = (struct i2o_reply *)(sc->sc_rep + off); /* Perform reply queue DMA synchronisation. XXX This is rubbish. */ bus_dmamap_sync(sc->sc_dmat, sc->sc_rep_dmamap, off, sc->sc_rep_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); if (--sc->sc_curib != 0) bus_dmamap_sync(sc->sc_dmat, sc->sc_rep_dmamap, 0, sc->sc_rep_size, BUS_DMASYNC_PREREAD); #ifdef I2ODEBUG if ((letoh32(rb->msgflags) & I2O_MSGFLAGS_64BIT) != 0) panic("iop_handle_reply: 64-bit reply"); #endif /* * Find the initiator. */ ictx = letoh32(rb->msgictx); if (ictx == IOP_ICTX) ii = NULL; else { ii = LIST_FIRST(IOP_ICTXHASH(ictx)); for (; ii != NULL; ii = LIST_NEXT(ii, ii_hash)) if (ii->ii_ictx == ictx) break; if (ii == NULL) { #ifdef I2ODEBUG iop_reply_print(sc, rb); #endif printf("%s: WARNING: bad ictx returned (%x)\n", sc->sc_dv.dv_xname, ictx); return (-1); } } /* * If we received a transport failure notice, we've got to dig the * transaction context (if any) out of the original message frame, * and then release the original MFA back to the inbound FIFO. */ if ((rb->msgflags & I2O_MSGFLAGS_FAIL) != 0) { status = I2O_STATUS_SUCCESS; fn = (struct i2o_fault_notify *)rb; tctx = iop_inl(sc, fn->lowmfa + 12); /* XXX */ iop_release_mfa(sc, fn->lowmfa); iop_tfn_print(sc, fn); } else { status = rb->reqstatus; tctx = letoh32(rb->msgtctx); } if (ii == NULL || (ii->ii_flags & II_DISCARD) == 0) { /* * This initiator tracks state using message wrappers. * * Find the originating message wrapper, and if requested * notify the initiator. */ im = sc->sc_ims + (tctx & IOP_TCTX_MASK); if ((tctx & IOP_TCTX_MASK) > sc->sc_maxib || (im->im_flags & IM_ALLOCED) == 0 || tctx != im->im_tctx) { printf("%s: WARNING: bad tctx returned (0x%08x, %p)\n", sc->sc_dv.dv_xname, tctx, im); if (im != NULL) printf("%s: flags=0x%08x tctx=0x%08x\n", sc->sc_dv.dv_xname, im->im_flags, im->im_tctx); #ifdef I2ODEBUG if ((rb->msgflags & I2O_MSGFLAGS_FAIL) == 0) iop_reply_print(sc, rb); #endif return (-1); } if ((rb->msgflags & I2O_MSGFLAGS_FAIL) != 0) im->im_flags |= IM_FAIL; #ifdef I2ODEBUG if ((im->im_flags & IM_REPLIED) != 0) panic("%s: dup reply", sc->sc_dv.dv_xname); #endif im->im_flags |= IM_REPLIED; #ifdef I2ODEBUG if (status != I2O_STATUS_SUCCESS) iop_reply_print(sc, rb); #endif im->im_reqstatus = status; /* Copy the reply frame, if requested. */ if (im->im_rb != NULL) { size = (letoh32(rb->msgflags) >> 14) & ~3; #ifdef I2ODEBUG if (size > IOP_MAX_MSG_SIZE) panic("iop_handle_reply: reply too large"); #endif memcpy(im->im_rb, rb, size); } /* Notify the initiator. */ if ((im->im_flags & IM_WAIT) != 0) wakeup(im); else if ((im->im_flags & (IM_POLL | IM_POLL_INTR)) != IM_POLL) (*ii->ii_intr)(ii->ii_dv, im, rb); } else { /* * This initiator discards message wrappers. * * Simply pass the reply frame to the initiator. */ (*ii->ii_intr)(ii->ii_dv, NULL, rb); } return (status); } /* * Handle an interrupt from the IOP. */ int iop_intr(void *arg) { struct iop_softc *sc; u_int32_t rmfa; sc = arg; if ((iop_inl(sc, IOP_REG_INTR_STATUS) & IOP_INTR_OFIFO) == 0) return (0); for (;;) { /* Double read to account for IOP bug. */ if ((rmfa = iop_inl(sc, IOP_REG_OFIFO)) == IOP_MFA_EMPTY) { rmfa = iop_inl(sc, IOP_REG_OFIFO); if (rmfa == IOP_MFA_EMPTY) break; } iop_handle_reply(sc, rmfa); iop_outl(sc, IOP_REG_OFIFO, rmfa); } return (1); } /* * Handle an event signalled by the executive. */ void iop_intr_event(struct device *dv, struct iop_msg *im, void *reply) { struct i2o_util_event_register_reply *rb; struct iop_softc *sc; u_int event; sc = (struct iop_softc *)dv; rb = reply; if ((rb->msgflags & I2O_MSGFLAGS_FAIL) != 0) return; event = letoh32(rb->event); printf("%s: event 0x%08x received\n", dv->dv_xname, event); } /* * Allocate a message wrapper. */ struct iop_msg * iop_msg_alloc(struct iop_softc *sc, struct iop_initiator *ii, int flags) { struct iop_msg *im; static u_int tctxgen; int s, i; #ifdef I2ODEBUG if ((flags & IM_SYSMASK) != 0) panic("iop_msg_alloc: system flags specified"); #endif s = splbio(); /* XXX */ im = SLIST_FIRST(&sc->sc_im_freelist); #if defined(DIAGNOSTIC) || defined(I2ODEBUG) if (im == NULL) panic("iop_msg_alloc: no free wrappers"); #endif SLIST_REMOVE_HEAD(&sc->sc_im_freelist, im_chain); splx(s); if (ii != NULL && (ii->ii_flags & II_DISCARD) != 0) flags |= IM_DISCARD; im->im_tctx = (im->im_tctx & IOP_TCTX_MASK) | tctxgen; tctxgen += (1 << IOP_TCTX_SHIFT); im->im_flags = flags | IM_ALLOCED; im->im_rb = NULL; i = 0; do { im->im_xfer[i++].ix_size = 0; } while (i < IOP_MAX_MSG_XFERS); return (im); } /* * Free a message wrapper. */ void iop_msg_free(struct iop_softc *sc, struct iop_msg *im) { int s; #ifdef I2ODEBUG if ((im->im_flags & IM_ALLOCED) == 0) panic("iop_msg_free: wrapper not allocated"); #endif im->im_flags = 0; s = splbio(); SLIST_INSERT_HEAD(&sc->sc_im_freelist, im, im_chain); splx(s); } /* * Map a data transfer. Write a scatter-gather list into the message frame. */ int iop_msg_map(struct iop_softc *sc, struct iop_msg *im, u_int32_t *mb, void *xferaddr, size_t xfersize, int out) { bus_dmamap_t dm; bus_dma_segment_t *ds; struct iop_xfer *ix; u_int rv, i, nsegs, flg, off, xn; u_int32_t *p; for (xn = 0, ix = im->im_xfer; xn < IOP_MAX_MSG_XFERS; xn++, ix++) if (ix->ix_size == 0) break; #ifdef I2ODEBUG if (xfersize == 0) panic("iop_msg_map: null transfer"); if (xfersize > IOP_MAX_XFER) panic("iop_msg_map: transfer too large"); if (xn == IOP_MAX_MSG_XFERS) panic("iop_msg_map: too many xfers"); #endif /* * Only the first DMA map is static. */ if (xn != 0) { rv = bus_dmamap_create(sc->sc_dmat, IOP_MAX_XFER, IOP_MAX_SEGS, IOP_MAX_XFER, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &ix->ix_map); if (rv != 0) return (rv); } dm = ix->ix_map; rv = bus_dmamap_load(sc->sc_dmat, dm, xferaddr, xfersize, NULL, 0); if (rv != 0) goto bad; /* * How many SIMPLE SG elements can we fit in this message? */ off = mb[0] >> 16; p = mb + off; nsegs = ((IOP_MAX_MSG_SIZE / sizeof *mb) - off) >> 1; if (dm->dm_nsegs > nsegs) { bus_dmamap_unload(sc->sc_dmat, ix->ix_map); rv = EFBIG; DPRINTF(("iop_msg_map: too many segs\n")); goto bad; } nsegs = dm->dm_nsegs; xfersize = 0; /* * Write out the SG list. */ if (out) flg = I2O_SGL_SIMPLE | I2O_SGL_DATA_OUT; else flg = I2O_SGL_SIMPLE; for (i = nsegs, ds = dm->dm_segs; i > 1; i--, p += 2, ds++) { p[0] = (u_int32_t)ds->ds_len | flg; p[1] = (u_int32_t)ds->ds_addr; xfersize += ds->ds_len; } p[0] = (u_int32_t)ds->ds_len | flg | I2O_SGL_END_BUFFER; p[1] = (u_int32_t)ds->ds_addr; xfersize += ds->ds_len; /* Fix up the transfer record, and sync the map. */ ix->ix_flags = (out ? IX_OUT : IX_IN); ix->ix_size = xfersize; bus_dmamap_sync(sc->sc_dmat, ix->ix_map, 0, xfersize, out ? BUS_DMASYNC_POSTWRITE : BUS_DMASYNC_POSTREAD); /* * If this is the first xfer we've mapped for this message, adjust * the SGL offset field in the message header. */ if ((im->im_flags & IM_SGLOFFADJ) == 0) { mb[0] += (mb[0] >> 12) & 0xf0; im->im_flags |= IM_SGLOFFADJ; } mb[0] += (nsegs << 17); return (0); bad: if (xn != 0) bus_dmamap_destroy(sc->sc_dmat, ix->ix_map); return (rv); } /* * Map a block I/O data transfer (different in that there's only one per * message maximum, and PAGE addressing may be used). Write a scatter * gather list into the message frame. */ int iop_msg_map_bio(struct iop_softc *sc, struct iop_msg *im, u_int32_t *mb, void *xferaddr, int xfersize, int out) { bus_dma_segment_t *ds; bus_dmamap_t dm; struct iop_xfer *ix; u_int rv, i, nsegs, off, slen, tlen, flg; paddr_t saddr, eaddr; u_int32_t *p; #ifdef I2ODEBUG if (xfersize == 0) panic("iop_msg_map_bio: null transfer"); if (xfersize > IOP_MAX_XFER) panic("iop_msg_map_bio: transfer too large"); if ((im->im_flags & IM_SGLOFFADJ) != 0) panic("iop_msg_map_bio: SGLOFFADJ"); #endif ix = im->im_xfer; dm = ix->ix_map; rv = bus_dmamap_load(sc->sc_dmat, dm, xferaddr, xfersize, NULL, 0); if (rv != 0) return (rv); off = mb[0] >> 16; nsegs = ((IOP_MAX_MSG_SIZE / 4) - off) >> 1; /* * If the transfer is highly fragmented and won't fit using SIMPLE * elements, use PAGE_LIST elements instead. SIMPLE elements are * potentially more efficient, both for us and the IOP. */ if (dm->dm_nsegs > nsegs) { nsegs = 1; p = mb + off + 1; /* XXX This should be done with a bus_space flag. */ for (i = dm->dm_nsegs, ds = dm->dm_segs; i > 0; i--, ds++) { slen = ds->ds_len; saddr = ds->ds_addr; while (slen > 0) { eaddr = (saddr + PAGE_SIZE) & ~(PAGE_SIZE - 1); tlen = min(eaddr - saddr, slen); slen -= tlen; *p++ = letoh32(saddr); saddr = eaddr; nsegs++; } } mb[off] = xfersize | I2O_SGL_PAGE_LIST | I2O_SGL_END_BUFFER | I2O_SGL_END; if (out) mb[off] |= I2O_SGL_DATA_OUT; } else { p = mb + off; nsegs = dm->dm_nsegs; if (out) flg = I2O_SGL_SIMPLE | I2O_SGL_DATA_OUT; else flg = I2O_SGL_SIMPLE; for (i = nsegs, ds = dm->dm_segs; i > 1; i--, p += 2, ds++) { p[0] = (u_int32_t)ds->ds_len | flg; p[1] = (u_int32_t)ds->ds_addr; } p[0] = (u_int32_t)ds->ds_len | flg | I2O_SGL_END_BUFFER | I2O_SGL_END; p[1] = (u_int32_t)ds->ds_addr; nsegs <<= 1; } /* Fix up the transfer record, and sync the map. */ ix->ix_flags = (out ? IX_OUT : IX_IN); ix->ix_size = xfersize; bus_dmamap_sync(sc->sc_dmat, ix->ix_map, 0, ix->ix_map->dm_mapsize, out ? BUS_DMASYNC_POSTWRITE : BUS_DMASYNC_POSTREAD); /* * Adjust the SGL offset and total message size fields. We don't * set IM_SGLOFFADJ, since it's used only for SIMPLE elements. */ mb[0] += ((off << 4) + (nsegs << 16)); return (0); } /* * Unmap all data transfers associated with a message wrapper. */ void iop_msg_unmap(struct iop_softc *sc, struct iop_msg *im) { struct iop_xfer *ix; int i; #ifdef I2ODEBUG if (im->im_xfer[0].ix_size == 0) panic("iop_msg_unmap: no transfers mapped"); #endif for (ix = im->im_xfer, i = 0;;) { bus_dmamap_sync(sc->sc_dmat, ix->ix_map, 0, ix->ix_size, ix->ix_flags & IX_OUT ? BUS_DMASYNC_POSTWRITE : BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->sc_dmat, ix->ix_map); /* Only the first DMA map is static. */ if (i != 0) bus_dmamap_destroy(sc->sc_dmat, ix->ix_map); if ((++ix)->ix_size == 0) break; if (++i >= IOP_MAX_MSG_XFERS) break; } } /* * Post a message frame to the IOP's inbound queue. */ int iop_post(struct iop_softc *sc, u_int32_t *mb) { u_int32_t mfa; int s; size_t size = mb[0] >> 14 & ~3; /* ZZZ */ if (size > IOP_MAX_MSG_SIZE) panic("iop_post: frame too large"); #ifdef I2ODEBUG { int i; printf("\niop_post\n"); for (i = 0; i < size / sizeof *mb; i++) printf("%4d %08x\n", i, mb[i]); } #endif s = splbio(); /* XXX */ /* Allocate a slot with the IOP. */ if ((mfa = iop_inl(sc, IOP_REG_IFIFO)) == IOP_MFA_EMPTY) if ((mfa = iop_inl(sc, IOP_REG_IFIFO)) == IOP_MFA_EMPTY) { splx(s); printf("%s: mfa not forthcoming\n", sc->sc_dv.dv_xname); return (EAGAIN); } #ifdef I2ODEBUG printf("mfa = %u\n", mfa); #endif /* Copy out the message frame. */ bus_space_write_region_4(sc->sc_iot, sc->sc_ioh, mfa, mb, size / sizeof *mb); bus_space_barrier(sc->sc_iot, sc->sc_ioh, mfa, size, BUS_SPACE_BARRIER_WRITE); /* Post the MFA back to the IOP. */ iop_outl(sc, IOP_REG_IFIFO, mfa); splx(s); return (0); } /* * Post a message to the IOP and deal with completion. */ int iop_msg_post(struct iop_softc *sc, struct iop_msg *im, void *xmb, int timo) { u_int32_t *mb = xmb; int rv, s; size_t size = mb[0] >> 14 & 3; /* Terminate the scatter/gather list chain. */ if ((im->im_flags & IM_SGLOFFADJ) != 0) mb[size - 2] |= I2O_SGL_END; /* Perform reply buffer DMA synchronisation. */ if (sc->sc_curib++ == 0) bus_dmamap_sync(sc->sc_dmat, sc->sc_rep_dmamap, 0, sc->sc_rep_size, BUS_DMASYNC_PREREAD); if ((rv = iop_post(sc, mb)) != 0) return (rv); if ((im->im_flags & IM_DISCARD) != 0) iop_msg_free(sc, im); else if ((im->im_flags & IM_POLL) != 0 && timo == 0) { /* XXX For ofifo_init(). */ rv = 0; } else if ((im->im_flags & (IM_POLL | IM_WAIT)) != 0) { if ((im->im_flags & IM_POLL) != 0) iop_msg_poll(sc, im, timo); else iop_msg_wait(sc, im, timo); s = splbio(); if ((im->im_flags & IM_REPLIED) != 0) { if ((im->im_flags & IM_NOSTATUS) != 0) rv = 0; else if ((im->im_flags & IM_FAIL) != 0) rv = ENXIO; else if (im->im_reqstatus != I2O_STATUS_SUCCESS) rv = EIO; else rv = 0; } else rv = EBUSY; splx(s); } else rv = 0; return (rv); } /* * Spin until the specified message is replied to. */ void iop_msg_poll(struct iop_softc *sc, struct iop_msg *im, int timo) { u_int32_t rmfa; int s, status; s = splbio(); /* XXX */ /* Wait for completion. */ for (timo *= 10; timo != 0; timo--) { if ((iop_inl(sc, IOP_REG_INTR_STATUS) & IOP_INTR_OFIFO) != 0) { /* Double read to account for IOP bug. */ rmfa = iop_inl(sc, IOP_REG_OFIFO); if (rmfa == IOP_MFA_EMPTY) rmfa = iop_inl(sc, IOP_REG_OFIFO); if (rmfa != IOP_MFA_EMPTY) { status = iop_handle_reply(sc, rmfa); /* * Return the reply frame to the IOP's * outbound FIFO. */ iop_outl(sc, IOP_REG_OFIFO, rmfa); } } if ((im->im_flags & IM_REPLIED) != 0) break; DELAY(100); } if (timo == 0) { #ifdef I2ODEBUG printf("%s: poll - no reply\n", sc->sc_dv.dv_xname); if (iop_status_get(sc, 1) != 0) printf("iop_msg_poll: unable to retrieve status\n"); else printf("iop_msg_poll: IOP state = %d\n", (letoh32(sc->sc_status.segnumber) >> 16) & 0xff); #endif } splx(s); } /* * Sleep until the specified message is replied to. */ void iop_msg_wait(struct iop_softc *sc, struct iop_msg *im, int timo) { int s, rv; s = splbio(); if ((im->im_flags & IM_REPLIED) != 0) { splx(s); return; } rv = tsleep(im, PRIBIO, "iopmsg", timo * hz / 1000); splx(s); #ifdef I2ODEBUG if (rv != 0) { printf("iop_msg_wait: tsleep() == %d\n", rv); if (iop_status_get(sc, 0) != 0) printf("iop_msg_wait: unable to retrieve status\n"); else printf("iop_msg_wait: IOP state = %d\n", (letoh32(sc->sc_status.segnumber) >> 16) & 0xff); } #endif } /* * Release an unused message frame back to the IOP's inbound fifo. */ void iop_release_mfa(struct iop_softc *sc, u_int32_t mfa) { /* Use the frame to issue a no-op. */ iop_outl(sc, mfa, I2O_VERSION_11 | (4 << 16)); iop_outl(sc, mfa + 4, I2O_MSGFUNC(I2O_TID_IOP, I2O_UTIL_NOP)); iop_outl(sc, mfa + 8, 0); iop_outl(sc, mfa + 12, 0); iop_outl(sc, IOP_REG_IFIFO, mfa); } #ifdef I2ODEBUG /* * Dump a reply frame header. */ void iop_reply_print(struct iop_softc *sc, struct i2o_reply *rb) { u_int function, detail; #ifdef I2OVERBOSE const char *statusstr; #endif function = (letoh32(rb->msgfunc) >> 24) & 0xff; detail = letoh16(rb->detail); printf("%s: reply:\n", sc->sc_dv.dv_xname); #ifdef I2OVERBOSE if (rb->reqstatus < sizeof(iop_status) / sizeof(iop_status[0])) statusstr = iop_status[rb->reqstatus]; else statusstr = "undefined error code"; printf("%s: function=0x%02x status=0x%02x (%s)\n", sc->sc_dv.dv_xname, function, rb->reqstatus, statusstr); #else printf("%s: function=0x%02x status=0x%02x\n", sc->sc_dv.dv_xname, function, rb->reqstatus); #endif printf("%s: detail=0x%04x ictx=0x%08x tctx=0x%08x\n", sc->sc_dv.dv_xname, detail, letoh32(rb->msgictx), letoh32(rb->msgtctx)); printf("%s: tidi=%d tidt=%d flags=0x%02x\n", sc->sc_dv.dv_xname, (letoh32(rb->msgfunc) >> 12) & 4095, letoh32(rb->msgfunc) & 4095, (letoh32(rb->msgflags) >> 8) & 0xff); } #endif /* * Dump a transport failure reply. */ void iop_tfn_print(struct iop_softc *sc, struct i2o_fault_notify *fn) { printf("%s: WARNING: transport failure:\n", sc->sc_dv.dv_xname); printf("%s: ictx=0x%08x tctx=0x%08x\n", sc->sc_dv.dv_xname, letoh32(fn->msgictx), letoh32(fn->msgtctx)); printf("%s: failurecode=0x%02x severity=0x%02x\n", sc->sc_dv.dv_xname, fn->failurecode, fn->severity); printf("%s: highestver=0x%02x lowestver=0x%02x\n", sc->sc_dv.dv_xname, fn->highestver, fn->lowestver); } /* * Translate an I2O ASCII field into a C string. */ void iop_strvis(struct iop_softc *sc, const char *src, int slen, char *dst, int dlen) { int hc, lc, i, nit; dlen--; lc = 0; hc = 0; i = 0; /* * DPT use NUL as a space, whereas AMI use it as a terminator. The * spec has nothing to say about it. Since AMI fields are usually * filled with junk after the terminator, ... */ nit = (letoh16(sc->sc_status.orgid) != I2O_ORG_DPT); while (slen-- != 0 && dlen-- != 0) { if (nit && *src == '\0') break; else if (*src <= 0x20 || *src >= 0x7f) { if (hc) dst[i++] = ' '; } else { hc = 1; dst[i++] = *src; lc = i; } src++; } dst[lc] = '\0'; } /* * Retrieve the DEVICE_IDENTITY parameter group from the target and dump it. */ int iop_print_ident(struct iop_softc *sc, int tid) { struct { struct i2o_param_op_results pr; struct i2o_param_read_results prr; struct i2o_param_device_identity di; } __packed p; char buf[32]; int rv; rv = iop_param_op(sc, tid, NULL, 0, I2O_PARAM_DEVICE_IDENTITY, &p, sizeof(p)); if (rv != 0) return (rv); iop_strvis(sc, p.di.vendorinfo, sizeof(p.di.vendorinfo), buf, sizeof(buf)); printf(" <%s, ", buf); iop_strvis(sc, p.di.productinfo, sizeof(p.di.productinfo), buf, sizeof(buf)); printf("%s, ", buf); iop_strvis(sc, p.di.revlevel, sizeof(p.di.revlevel), buf, sizeof(buf)); printf("%s>", buf); return (0); } /* * Claim or unclaim the specified TID. */ int iop_util_claim(struct iop_softc *sc, struct iop_initiator *ii, int release, int flags) { struct iop_msg *im; struct i2o_util_claim mf; int rv, func; func = release ? I2O_UTIL_CLAIM_RELEASE : I2O_UTIL_CLAIM; im = iop_msg_alloc(sc, ii, IM_WAIT); /* We can use the same structure, as they're identical. */ mf.msgflags = I2O_MSGFLAGS(i2o_util_claim); mf.msgfunc = I2O_MSGFUNC(ii->ii_tid, func); mf.msgictx = ii->ii_ictx; mf.msgtctx = im->im_tctx; mf.flags = flags; rv = iop_msg_post(sc, im, &mf, 5000); iop_msg_free(sc, im); return (rv); } /* * Perform an abort. */ int iop_util_abort(struct iop_softc *sc, struct iop_initiator *ii, int func, int tctxabort, int flags) { struct iop_msg *im; struct i2o_util_abort mf; int rv; im = iop_msg_alloc(sc, ii, IM_WAIT); mf.msgflags = I2O_MSGFLAGS(i2o_util_abort); mf.msgfunc = I2O_MSGFUNC(ii->ii_tid, I2O_UTIL_ABORT); mf.msgictx = ii->ii_ictx; mf.msgtctx = im->im_tctx; mf.flags = (func << 24) | flags; mf.tctxabort = tctxabort; rv = iop_msg_post(sc, im, &mf, 5000); iop_msg_free(sc, im); return (rv); } /* * Enable or disable reception of events for the specified device. */ int iop_util_eventreg(struct iop_softc *sc, struct iop_initiator *ii, int mask) { struct iop_msg *im; struct i2o_util_event_register mf; im = iop_msg_alloc(sc, ii, 0); mf.msgflags = I2O_MSGFLAGS(i2o_util_event_register); mf.msgfunc = I2O_MSGFUNC(ii->ii_tid, I2O_UTIL_EVENT_REGISTER); mf.msgictx = ii->ii_ictx; mf.msgtctx = im->im_tctx; mf.eventmask = mask; /* This message is replied to only when events are signalled. */ return (iop_msg_post(sc, im, &mf, 0)); } int iopopen(dev_t dev, int flag, int mode, struct proc *p) { struct iop_softc *sc; if (!(sc = (struct iop_softc *)device_lookup(&iop_cd, minor(dev)))) return (ENXIO); if ((sc->sc_flags & IOP_ONLINE) == 0) return (ENXIO); if ((sc->sc_flags & IOP_OPEN) != 0) return (EBUSY); sc->sc_flags |= IOP_OPEN; sc->sc_ptb = malloc(IOP_MAX_XFER * IOP_MAX_MSG_XFERS, M_DEVBUF, M_WAITOK); if (sc->sc_ptb == NULL) { sc->sc_flags ^= IOP_OPEN; return (ENOMEM); } return (0); } int iopclose(dev_t dev, int flag, int mode, struct proc *p) { struct iop_softc *sc; sc = (struct iop_softc *)device_lookup(&iop_cd, minor(dev)); /* XXX */ free(sc->sc_ptb, M_DEVBUF); sc->sc_flags &= ~IOP_OPEN; return (0); } int iopioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct proc *p) { struct iop_softc *sc; struct iovec *iov; int rv, i; if (securelevel >= 2) return (EPERM); sc = (struct iop_softc *)device_lookup(&iop_cd, minor(dev)); /* XXX */ switch (cmd) { case IOPIOCPT: return (iop_passthrough(sc, (struct ioppt *)data)); case IOPIOCGSTATUS: iov = (struct iovec *)data; i = sizeof(struct i2o_status); if (i > iov->iov_len) i = iov->iov_len; else iov->iov_len = i; if ((rv = iop_status_get(sc, 0)) == 0) rv = copyout(&sc->sc_status, iov->iov_base, i); return (rv); case IOPIOCGLCT: case IOPIOCGTIDMAP: case IOPIOCRECONFIG: break; default: #if defined(DIAGNOSTIC) || defined(I2ODEBUG) printf("%s: unknown ioctl %lx\n", sc->sc_dv.dv_xname, cmd); #endif return (ENOTTY); } if ((rv = lockmgr(&sc->sc_conflock, LK_SHARED, NULL)) != 0) return (rv); switch (cmd) { case IOPIOCGLCT: iov = (struct iovec *)data; i = letoh16(sc->sc_lct->tablesize) << 2; if (i > iov->iov_len) i = iov->iov_len; else iov->iov_len = i; rv = copyout(sc->sc_lct, iov->iov_base, i); break; case IOPIOCRECONFIG: rv = iop_reconfigure(sc, 0); break; case IOPIOCGTIDMAP: iov = (struct iovec *)data; i = sizeof(struct iop_tidmap) * sc->sc_nlctent; if (i > iov->iov_len) i = iov->iov_len; else iov->iov_len = i; rv = copyout(sc->sc_tidmap, iov->iov_base, i); break; } lockmgr(&sc->sc_conflock, LK_RELEASE, NULL); return (rv); } int iop_passthrough(struct iop_softc *sc, struct ioppt *pt) { struct iop_msg *im; struct i2o_msg *mf; struct ioppt_buf *ptb; int rv, i, mapped; void *buf; mf = NULL; im = NULL; mapped = 1; if (pt->pt_msglen > IOP_MAX_MSG_SIZE || pt->pt_msglen > (letoh16(sc->sc_status.inboundmframesize) << 2) || pt->pt_msglen < sizeof(struct i2o_msg) || pt->pt_nbufs > IOP_MAX_MSG_XFERS || pt->pt_nbufs < 0 || pt->pt_replylen < 0 || pt->pt_timo < 1000 || pt->pt_timo > 5*60*1000) return (EINVAL); for (i = 0; i < pt->pt_nbufs; i++) if (pt->pt_bufs[i].ptb_datalen > IOP_MAX_XFER) { rv = ENOMEM; goto bad; } mf = malloc(IOP_MAX_MSG_SIZE, M_DEVBUF, M_WAITOK); if (mf == NULL) return (ENOMEM); if ((rv = copyin(pt->pt_msg, mf, pt->pt_msglen)) != 0) goto bad; im = iop_msg_alloc(sc, NULL, IM_WAIT | IM_NOSTATUS); im->im_rb = (struct i2o_reply *)mf; mf->msgictx = IOP_ICTX; mf->msgtctx = im->im_tctx; for (i = 0; i < pt->pt_nbufs; i++) { ptb = &pt->pt_bufs[i]; buf = sc->sc_ptb + i * IOP_MAX_XFER; if ((u_int)ptb->ptb_datalen > IOP_MAX_XFER) { rv = EINVAL; goto bad; } if (ptb->ptb_out != 0) { rv = copyin(ptb->ptb_data, buf, ptb->ptb_datalen); if (rv != 0) goto bad; } rv = iop_msg_map(sc, im, (u_int32_t *)mf, buf, ptb->ptb_datalen, ptb->ptb_out != 0); if (rv != 0) goto bad; mapped = 1; } if ((rv = iop_msg_post(sc, im, mf, pt->pt_timo)) != 0) goto bad; i = (letoh32(im->im_rb->msgflags) >> 14) & ~3; if (i > IOP_MAX_MSG_SIZE) i = IOP_MAX_MSG_SIZE; if (i > pt->pt_replylen) i = pt->pt_replylen; if ((rv = copyout(im->im_rb, pt->pt_reply, i)) != 0) goto bad; iop_msg_unmap(sc, im); mapped = 0; for (i = 0; i < pt->pt_nbufs; i++) { ptb = &pt->pt_bufs[i]; if (ptb->ptb_out != 0) continue; buf = sc->sc_ptb + i * IOP_MAX_XFER; rv = copyout(buf, ptb->ptb_data, ptb->ptb_datalen); if (rv != 0) break; } bad: if (mapped != 0) iop_msg_unmap(sc, im); if (im != NULL) iop_msg_free(sc, im); if (mf != NULL) free(mf, M_DEVBUF); return (rv); }