/* $OpenBSD: aic7xxx_openbsd.c,v 1.38 2008/05/13 02:24:08 brad Exp $ */ /* $NetBSD: aic7xxx_osm.c,v 1.14 2003/11/02 11:07:44 wiz Exp $ */ /* * Bus independent OpenBSD shim for the aic7xxx based adaptec SCSI controllers * * Copyright (c) 1994-2001 Justin T. Gibbs. * Copyright (c) 2001-2002 Steve Murphree, Jr. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU Public License ("GPL"). * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * //depot/aic7xxx/freebsd/dev/aic7xxx/aic7xxx_osm.c#12 $ * * $FreeBSD: src/sys/dev/aic7xxx/aic7xxx_osm.c,v 1.31 2002/11/30 19:08:58 scottl Exp $ */ /* * Ported from FreeBSD by Pascal Renauld, Network Storage Solutions, Inc. - April 2003 */ #include #include #ifndef AHC_TMODE_ENABLE #define AHC_TMODE_ENABLE 0 #endif int ahc_action(struct scsi_xfer *); int ahc_execute_scb(void *, bus_dma_segment_t *, int); int ahc_poll(struct ahc_softc *, int); int ahc_setup_data(struct ahc_softc *, struct scsi_xfer *, struct scb *); void ahc_minphys(struct buf *); void ahc_adapter_req_set_xfer_mode(struct ahc_softc *, struct scb *); struct cfdriver ahc_cd = { NULL, "ahc", DV_DULL }; static struct scsi_adapter ahc_switch = { ahc_action, ahc_minphys, 0, 0, }; /* the below structure is so we have a default dev struct for our link struct */ static struct scsi_device ahc_dev = { NULL, /* Use default error handler */ NULL, /* have a queue, served by this */ NULL, /* have no async handler */ NULL, /* Use default 'done' routine */ }; /* * Attach all the sub-devices we can find */ int ahc_attach(struct ahc_softc *ahc) { struct scsibus_attach_args saa; int s; s = splbio(); /* * fill in the prototype scsi_links. */ ahc->sc_channel.adapter_target = ahc->our_id; if (ahc->features & AHC_WIDE) ahc->sc_channel.adapter_buswidth = 16; ahc->sc_channel.adapter_softc = ahc; ahc->sc_channel.adapter = &ahc_switch; ahc->sc_channel.openings = 16; ahc->sc_channel.device = &ahc_dev; if (ahc->features & AHC_TWIN) { /* Configure the second scsi bus */ ahc->sc_channel_b = ahc->sc_channel; ahc->sc_channel_b.adapter_target = ahc->our_id_b; } #ifndef DEBUG if (bootverbose) { char ahc_info[256]; ahc_controller_info(ahc, ahc_info, sizeof ahc_info); printf("%s: %s\n", ahc->sc_dev.dv_xname, ahc_info); } #endif ahc_intr_enable(ahc, TRUE); if (ahc->flags & AHC_RESET_BUS_A) ahc_reset_channel(ahc, 'A', TRUE); if ((ahc->features & AHC_TWIN) && ahc->flags & AHC_RESET_BUS_B) ahc_reset_channel(ahc, 'B', TRUE); bzero(&saa, sizeof(saa)); if ((ahc->flags & AHC_PRIMARY_CHANNEL) == 0) { saa.saa_sc_link = &ahc->sc_channel; ahc->sc_child = config_found((void *)&ahc->sc_dev, &saa, scsiprint); if (ahc->features & AHC_TWIN) { saa.saa_sc_link = &ahc->sc_channel_b; ahc->sc_child_b = config_found((void *)&ahc->sc_dev, &saa, scsiprint); } } else { if (ahc->features & AHC_TWIN) { saa.saa_sc_link = &ahc->sc_channel_b; ahc->sc_child = config_found((void *)&ahc->sc_dev, &saa, scsiprint); } saa.saa_sc_link = &ahc->sc_channel; ahc->sc_child_b = config_found((void *)&ahc->sc_dev, &saa, scsiprint); } splx(s); return (1); } /* * Catch an interrupt from the adapter */ int ahc_platform_intr(void *arg) { struct ahc_softc *ahc = (struct ahc_softc *)arg; bus_dmamap_sync(ahc->parent_dmat, ahc->scb_data->hscb_dmamap, 0, ahc->scb_data->hscb_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); return ahc_intr(ahc); } /* * We have an scb which has been processed by the * adaptor, now we look to see how the operation * went. */ void ahc_done(struct ahc_softc *ahc, struct scb *scb) { struct scsi_xfer *xs = scb->xs; int s; bus_dmamap_sync(ahc->parent_dmat, ahc->scb_data->hscb_dmamap, 0, ahc->scb_data->hscb_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); LIST_REMOVE(scb, pending_links); if ((scb->flags & SCB_UNTAGGEDQ) != 0) { struct scb_tailq *untagged_q; int target_offset; target_offset = SCB_GET_TARGET_OFFSET(ahc, scb); untagged_q = &ahc->untagged_queues[target_offset]; TAILQ_REMOVE(untagged_q, scb, links.tqe); scb->flags &= ~SCB_UNTAGGEDQ; ahc_run_untagged_queue(ahc, untagged_q); } timeout_del(&xs->stimeout); if (xs->datalen) { int op; if ((xs->flags & SCSI_DATA_IN) != 0) op = BUS_DMASYNC_POSTREAD; else op = BUS_DMASYNC_POSTWRITE; bus_dmamap_sync(ahc->parent_dmat, scb->dmamap, 0, scb->dmamap->dm_mapsize, op); bus_dmamap_unload(ahc->parent_dmat, scb->dmamap); } /* Translate the CAM status code to a SCSI error code. */ switch (xs->error) { case CAM_SCSI_STATUS_ERROR: case CAM_REQ_INPROG: case CAM_REQ_CMP: switch (xs->status) { case SCSI_TASKSET_FULL: /* SCSI Layer won't requeue, so we force infinite * retries until queue space is available. XS_BUSY * is dangerous because if the NOSLEEP flag is set * it can cause the I/O to return EIO. XS_BUSY code * falls through to XS_TIMEOUT anyway. */ xs->error = XS_TIMEOUT; xs->retries++; break; case SCSI_BUSY: xs->error = XS_BUSY; break; case SCSI_CHECK: case SCSI_TERMINATED: if ((scb->flags & SCB_SENSE) == 0) { /* CHECK on CHECK? */ xs->error = XS_DRIVER_STUFFUP; } else xs->error = XS_NOERROR; break; default: xs->error = XS_NOERROR; break; } break; case CAM_BUSY: xs->error = XS_BUSY; break; case CAM_CMD_TIMEOUT: xs->error = XS_TIMEOUT; break; case CAM_BDR_SENT: case CAM_SCSI_BUS_RESET: xs->error = XS_RESET; break; case CAM_REQUEUE_REQ: xs->error = XS_TIMEOUT; xs->retries++; break; case CAM_SEL_TIMEOUT: xs->error = XS_SELTIMEOUT; break; default: xs->error = XS_DRIVER_STUFFUP; break; } /* Don't clobber any existing error state */ if (xs->error != XS_NOERROR) { /* Don't clobber any existing error state */ } else if ((scb->flags & SCB_SENSE) != 0) { /* * We performed autosense retrieval. * * Zero any sense not transferred by the * device. The SCSI spec mandates that any * untransferred data should be assumed to be * zero. Complete the 'bounce' of sense information * through buffers accessible via bus-space by * copying it into the clients csio. */ memset(&xs->sense, 0, sizeof(struct scsi_sense_data)); memcpy(&xs->sense, ahc_get_sense_buf(ahc, scb), aic_le32toh(scb->sg_list->len) & AHC_SG_LEN_MASK); xs->error = XS_SENSE; } s = splbio(); ahc_free_scb(ahc, scb); xs->flags |= ITSDONE; scsi_done(xs); splx(s); } void ahc_minphys(bp) struct buf *bp; { /* * Even though the card can transfer up to 16megs per command * we are limited by the number of segments in the dma segment * list that we can hold. The worst case is that all pages are * discontinuous physically, hence the "page per segment" limit * enforced here. */ if (bp->b_bcount > ((AHC_NSEG - 1) * PAGE_SIZE)) { bp->b_bcount = ((AHC_NSEG - 1) * PAGE_SIZE); } minphys(bp); } int32_t ahc_action(struct scsi_xfer *xs) { struct ahc_softc *ahc; struct scb *scb; struct hardware_scb *hscb; u_int target_id; u_int our_id; int s; int dontqueue = 0; SC_DEBUG(xs->sc_link, SDEV_DB3, ("ahc_action\n")); ahc = (struct ahc_softc *)xs->sc_link->adapter_softc; /* determine safety of software queueing */ dontqueue = xs->flags & SCSI_POLL; target_id = xs->sc_link->target; our_id = SCSI_SCSI_ID(ahc, xs->sc_link); /* * get an scb to use. */ s = splbio(); if ((scb = ahc_get_scb(ahc)) == NULL) { splx(s); return (TRY_AGAIN_LATER); } splx(s); hscb = scb->hscb; SC_DEBUG(xs->sc_link, SDEV_DB3, ("start scb(%p)\n", scb)); scb->xs = xs; timeout_set(&xs->stimeout, ahc_timeout, scb); /* * Put all the arguments for the xfer in the scb */ hscb->control = 0; hscb->scsiid = BUILD_SCSIID(ahc, xs->sc_link, target_id, our_id); hscb->lun = xs->sc_link->lun; if (xs->xs_control & XS_CTL_RESET) { hscb->cdb_len = 0; scb->flags |= SCB_DEVICE_RESET; hscb->control |= MK_MESSAGE; return (ahc_execute_scb(scb, NULL, 0)); } return (ahc_setup_data(ahc, xs, scb)); } int ahc_execute_scb(void *arg, bus_dma_segment_t *dm_segs, int nsegments) { struct scb *scb; struct scsi_xfer *xs; struct ahc_softc *ahc; struct ahc_initiator_tinfo *tinfo; struct ahc_tmode_tstate *tstate; u_int mask; int s; scb = (struct scb *)arg; xs = scb->xs; xs->error = CAM_REQ_INPROG; xs->status = 0; ahc = (struct ahc_softc *)xs->sc_link->adapter_softc; if (nsegments != 0) { struct ahc_dma_seg *sg; bus_dma_segment_t *end_seg; int op; end_seg = dm_segs + nsegments; /* Copy the segments into our SG list */ sg = scb->sg_list; while (dm_segs < end_seg) { uint32_t len; sg->addr = aic_htole32(dm_segs->ds_addr); len = dm_segs->ds_len | ((dm_segs->ds_addr >> 8) & 0x7F000000); sg->len = aic_htole32(len); sg++; dm_segs++; } /* * Note where to find the SG entries in bus space. * We also set the full residual flag which the * sequencer will clear as soon as a data transfer * occurs. */ scb->hscb->sgptr = aic_htole32(scb->sg_list_phys|SG_FULL_RESID); if ((xs->flags & SCSI_DATA_IN) != 0) op = BUS_DMASYNC_PREREAD; else op = BUS_DMASYNC_PREWRITE; bus_dmamap_sync(ahc->parent_dmat, scb->dmamap, 0, scb->dmamap->dm_mapsize, op); sg--; sg->len |= aic_htole32(AHC_DMA_LAST_SEG); bus_dmamap_sync(ahc->parent_dmat, scb->sg_map->sg_dmamap, 0, scb->sg_map->sg_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE); /* Copy the first SG into the "current" data pointer area */ scb->hscb->dataptr = scb->sg_list->addr; scb->hscb->datacnt = scb->sg_list->len; } else { scb->hscb->sgptr = aic_htole32(SG_LIST_NULL); scb->hscb->dataptr = 0; scb->hscb->datacnt = 0; } scb->sg_count = nsegments; s = splbio(); /* * Last time we need to check if this SCB needs to * be aborted. */ if (xs->flags & ITSDONE) { if (nsegments != 0) bus_dmamap_unload(ahc->parent_dmat, scb->dmamap); ahc_free_scb(ahc, scb); splx(s); return (COMPLETE); } tinfo = ahc_fetch_transinfo(ahc, SCSIID_CHANNEL(ahc, scb->hscb->scsiid), SCSIID_OUR_ID(scb->hscb->scsiid), SCSIID_TARGET(ahc, scb->hscb->scsiid), &tstate); mask = SCB_GET_TARGET_MASK(ahc, scb); scb->hscb->scsirate = tinfo->scsirate; scb->hscb->scsioffset = tinfo->curr.offset; if ((tstate->ultraenb & mask) != 0) scb->hscb->control |= ULTRAENB; if ((tstate->discenable & mask) != 0) scb->hscb->control |= DISCENB; if ((tstate->auto_negotiate & mask) != 0) { scb->flags |= SCB_AUTO_NEGOTIATE; scb->hscb->control |= MK_MESSAGE; } if ((tstate->tagenable & mask) != 0) scb->hscb->control |= TAG_ENB; bus_dmamap_sync(ahc->parent_dmat, ahc->scb_data->hscb_dmamap, 0, ahc->scb_data->hscb_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); LIST_INSERT_HEAD(&ahc->pending_scbs, scb, pending_links); if (!(xs->flags & SCSI_POLL)) timeout_add(&xs->stimeout, (xs->timeout * hz) / 1000); /* * We only allow one untagged transaction * per target in the initiator role unless * we are storing a full busy target *lun* * table in SCB space. * * This really should not be of any * concern, as we take care to avoid this * in ahc_done(). XXX smurph */ if ((scb->hscb->control & (TARGET_SCB|TAG_ENB)) == 0 && (ahc->flags & AHC_SCB_BTT) == 0) { struct scb_tailq *untagged_q; int target_offset; target_offset = SCB_GET_TARGET_OFFSET(ahc, scb); untagged_q = &(ahc->untagged_queues[target_offset]); TAILQ_INSERT_TAIL(untagged_q, scb, links.tqe); scb->flags |= SCB_UNTAGGEDQ; if (TAILQ_FIRST(untagged_q) != scb) { if (xs->flags & SCSI_POLL) goto poll; else { splx(s); return (SUCCESSFULLY_QUEUED); } } } scb->flags |= SCB_ACTIVE; if ((scb->flags & SCB_TARGET_IMMEDIATE) != 0) { /* Define a mapping from our tag to the SCB. */ ahc->scb_data->scbindex[scb->hscb->tag] = scb; ahc_pause(ahc); if ((ahc->flags & AHC_PAGESCBS) == 0) ahc_outb(ahc, SCBPTR, scb->hscb->tag); ahc_outb(ahc, TARG_IMMEDIATE_SCB, scb->hscb->tag); ahc_unpause(ahc); } else { ahc_queue_scb(ahc, scb); } if (!(xs->flags & SCSI_POLL)) { if (ahc->inited_target[xs->sc_link->target] == 0) { struct ahc_devinfo devinfo; ahc_adapter_req_set_xfer_mode(ahc, scb); ahc_scb_devinfo(ahc, &devinfo, scb); ahc_update_neg_request(ahc, &devinfo, tstate, tinfo, AHC_NEG_IF_NON_ASYNC); ahc->inited_target[xs->sc_link->target] = 1; } splx(s); return (SUCCESSFULLY_QUEUED); } /* * If we can't use interrupts, poll for completion */ poll: SC_DEBUG(xs->sc_link, SDEV_DB3, ("cmd_poll\n")); do { if (ahc_poll(ahc, xs->timeout)) { if (!(xs->flags & SCSI_SILENT)) printf("cmd fail\n"); ahc_timeout(scb); break; } } while (!(xs->flags & ITSDONE)); splx(s); return (COMPLETE); } int ahc_poll(struct ahc_softc *ahc, int wait) { while (--wait) { DELAY(1000); if (ahc_inb(ahc, INTSTAT) & INT_PEND) break; } if (wait == 0) { printf("%s: board is not responding\n", ahc_name(ahc)); return (EIO); } ahc_intr((void *)ahc); return (0); } int ahc_setup_data(struct ahc_softc *ahc, struct scsi_xfer *xs, struct scb *scb) { struct hardware_scb *hscb; int s; hscb = scb->hscb; xs->resid = xs->status = 0; xs->error = CAM_REQ_INPROG; hscb->cdb_len = xs->cmdlen; if (hscb->cdb_len > sizeof(hscb->cdb32)) { s = splbio(); ahc_free_scb(ahc, scb); xs->error = XS_DRIVER_STUFFUP; xs->flags |= ITSDONE; scsi_done(xs); splx(s); return (COMPLETE); } if (hscb->cdb_len > 12) { memcpy(hscb->cdb32, xs->cmd, hscb->cdb_len); scb->flags |= SCB_CDB32_PTR; } else { memcpy(hscb->shared_data.cdb, xs->cmd, hscb->cdb_len); } /* Only use S/G if there is a transfer */ if (xs->datalen) { int error; error = bus_dmamap_load(ahc->parent_dmat, scb->dmamap, xs->data, xs->datalen, NULL, (xs->flags & SCSI_NOSLEEP) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK); if (error) { #ifdef AHC_DEBUG printf("%s: in ahc_setup_data(): bus_dmamap_load() " "= %d\n", ahc_name(ahc), error); #endif s = splbio(); ahc_free_scb(ahc, scb); splx(s); return (TRY_AGAIN_LATER); /* XXX fvdl */ } error = ahc_execute_scb(scb, scb->dmamap->dm_segs, scb->dmamap->dm_nsegs); return error; } else { return ahc_execute_scb(scb, NULL, 0); } } void ahc_timeout(void *arg) { struct scb *scb, *list_scb; struct ahc_softc *ahc; int s; int found; char channel; scb = (struct scb *)arg; ahc = (struct ahc_softc *)scb->xs->sc_link->adapter_softc; s = splbio(); #ifdef AHC_DEBUG printf("%s: SCB %d timed out\n", ahc_name(ahc), scb->hscb->tag); ahc_dump_card_state(ahc); #endif ahc_pause(ahc); if (scb->flags & SCB_ACTIVE) { channel = SCB_GET_CHANNEL(ahc, scb); ahc_set_transaction_status(scb, CAM_CMD_TIMEOUT); /* * Go through all of our pending SCBs and remove * any scheduled timeouts for them. They're about to be * aborted so no need for them to timeout. */ LIST_FOREACH(list_scb, &ahc->pending_scbs, pending_links) { if (list_scb->xs) timeout_del(&list_scb->xs->stimeout); } found = ahc_reset_channel(ahc, channel, /*Initiate Reset*/TRUE); #ifdef AHC_DEBUG printf("%s: Issued Channel %c Bus Reset %d SCBs aborted\n", ahc_name(ahc), channel, found); #endif } ahc_unpause(ahc); splx(s); } void ahc_platform_set_tags(struct ahc_softc *ahc, struct ahc_devinfo *devinfo, int alg) { struct ahc_tmode_tstate *tstate; ahc_fetch_transinfo(ahc, devinfo->channel, devinfo->our_scsiid, devinfo->target, &tstate); /* XXXX Need to check quirks before doing this! XXXX */ switch (alg) { case AHC_QUEUE_BASIC: case AHC_QUEUE_TAGGED: tstate->tagenable |= devinfo->target_mask; break; case AHC_QUEUE_NONE: tstate->tagenable &= ~devinfo->target_mask; break; } } int ahc_platform_alloc(struct ahc_softc *ahc, void *platform_arg) { if (sizeof(struct ahc_platform_data) > 0) { ahc->platform_data = malloc(sizeof(struct ahc_platform_data), M_DEVBUF, M_NOWAIT | M_ZERO); if (ahc->platform_data == NULL) return (ENOMEM); } return (0); } void ahc_platform_free(struct ahc_softc *ahc) { if (sizeof(struct ahc_platform_data) > 0) free(ahc->platform_data, M_DEVBUF); } int ahc_softc_comp(struct ahc_softc *lahc, struct ahc_softc *rahc) { return (0); } void ahc_send_async(struct ahc_softc *ahc, char channel, u_int target, u_int lun, ac_code code, void *opt_arg) { /* Nothing to do here for OpenBSD */ } void ahc_adapter_req_set_xfer_mode(struct ahc_softc *ahc, struct scb *scb) { struct ahc_initiator_tinfo *tinfo; struct ahc_tmode_tstate *tstate; struct ahc_syncrate *syncrate; struct ahc_devinfo devinfo; u_int16_t quirks; u_int width, ppr_options, period, offset; int s; s = splbio(); ahc_scb_devinfo(ahc, &devinfo, scb); quirks = scb->xs->sc_link->quirks; tinfo = ahc_fetch_transinfo(ahc, devinfo.channel, devinfo.our_scsiid, devinfo.target, &tstate); tstate->discenable |= (ahc->user_discenable & devinfo.target_mask); if (quirks & SDEV_NOTAGS) tstate->tagenable &= ~devinfo.target_mask; else if (ahc->user_tagenable & devinfo.target_mask) tstate->tagenable |= devinfo.target_mask; if (quirks & SDEV_NOWIDE) width = MSG_EXT_WDTR_BUS_8_BIT; else width = MSG_EXT_WDTR_BUS_16_BIT; ahc_validate_width(ahc, NULL, &width, ROLE_UNKNOWN); if (width > tinfo->user.width) width = tinfo->user.width; ahc_set_width(ahc, &devinfo, width, AHC_TRANS_GOAL, FALSE); if (quirks & SDEV_NOSYNC) { period = 0; offset = 0; } else { period = tinfo->user.period; offset = tinfo->user.offset; } /* XXX Look at saved INQUIRY flags for PPR capabilities XXX */ ppr_options = tinfo->user.ppr_options; /* XXX Other reasons to avoid ppr? XXX */ if (width < MSG_EXT_WDTR_BUS_16_BIT) ppr_options = 0; if ((tstate->discenable & devinfo.target_mask) == 0 || (tstate->tagenable & devinfo.target_mask) == 0) ppr_options &= ~MSG_EXT_PPR_PROT_IUS; syncrate = ahc_find_syncrate(ahc, &period, &ppr_options, AHC_SYNCRATE_MAX); ahc_validate_offset(ahc, NULL, syncrate, &offset, width, ROLE_UNKNOWN); if (offset == 0) { period = 0; ppr_options = 0; } if (ppr_options != 0 && tinfo->user.transport_version >= 3) { tinfo->goal.transport_version = tinfo->user.transport_version; tinfo->curr.transport_version = tinfo->user.transport_version; } ahc_set_syncrate(ahc, &devinfo, syncrate, period, offset, ppr_options, AHC_TRANS_GOAL, FALSE); splx(s); }