/* $FabBSD$ */ /* $OpenBSD: if_vge.c,v 1.37 2008/05/22 19:23:04 mk Exp $ */ /* $FreeBSD: if_vge.c,v 1.3 2004/09/11 22:13:25 wpaul Exp $ */ /* * Copyright (c) 2004 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ /* * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver. * * Written by Bill Paul * Senior Networking Software Engineer * Wind River Systems * * Ported to OpenBSD by Peter Valchev */ /* * The VIA Networking VT6122 is a 32bit, 33/66MHz PCI device that * combines a tri-speed ethernet MAC and PHY, with the following * features: * * o Jumbo frame support up to 16K * o Transmit and receive flow control * o IPv4 checksum offload * o VLAN tag insertion and stripping * o TCP large send * o 64-bit multicast hash table filter * o 64 entry CAM filter * o 16K RX FIFO and 48K TX FIFO memory * o Interrupt moderation * * The VT6122 supports up to four transmit DMA queues. The descriptors * in the transmit ring can address up to 7 data fragments; frames which * span more than 7 data buffers must be coalesced, but in general the * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments * long. The receive descriptors address only a single buffer. * * There are two peculiar design issues with the VT6122. One is that * receive data buffers must be aligned on a 32-bit boundary. This is * not a problem where the VT6122 is used as a LOM device in x86-based * systems, but on architectures that generate unaligned access traps, we * have to do some copying. * * The other issue has to do with the way 64-bit addresses are handled. * The DMA descriptors only allow you to specify 48 bits of addressing * information. The remaining 16 bits are specified using one of the * I/O registers. If you only have a 32-bit system, then this isn't * an issue, but if you have a 64-bit system and more than 4GB of * memory, you must have to make sure your network data buffers reside * in the same 48-bit 'segment.' * * Special thanks to Ryan Fu at VIA Networking for providing documentation * and sample NICs for testing. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET #include #include #include #include #include #endif #include #include #include #include #include #include #include int vge_probe (struct device *, void *, void *); void vge_attach (struct device *, struct device *, void *); int vge_encap (struct vge_softc *, struct mbuf *, int); int vge_allocmem (struct vge_softc *); int vge_newbuf (struct vge_softc *, int, struct mbuf *); int vge_rx_list_init (struct vge_softc *); int vge_tx_list_init (struct vge_softc *); void vge_rxeof (struct vge_softc *); void vge_txeof (struct vge_softc *); int vge_intr (void *); void vge_tick (void *); void vge_start (struct ifnet *); int vge_ioctl (struct ifnet *, u_long, caddr_t); int vge_init (struct ifnet *); void vge_stop (struct vge_softc *); void vge_watchdog (struct ifnet *); int vge_ifmedia_upd (struct ifnet *); void vge_ifmedia_sts (struct ifnet *, struct ifmediareq *); #ifdef VGE_EEPROM void vge_eeprom_getword (struct vge_softc *, int, u_int16_t *); #endif void vge_read_eeprom (struct vge_softc *, caddr_t, int, int, int); void vge_miipoll_start (struct vge_softc *); void vge_miipoll_stop (struct vge_softc *); int vge_miibus_readreg (struct device *, int, int); void vge_miibus_writereg (struct device *, int, int, int); void vge_miibus_statchg (struct device *); void vge_cam_clear (struct vge_softc *); int vge_cam_set (struct vge_softc *, uint8_t *); void vge_setmulti (struct vge_softc *); void vge_reset (struct vge_softc *); struct cfattach vge_ca = { sizeof(struct vge_softc), vge_probe, vge_attach }; struct cfdriver vge_cd = { 0, "vge", DV_IFNET }; #define VGE_PCI_LOIO 0x10 #define VGE_PCI_LOMEM 0x14 int vge_debug = 0; #define DPRINTF(x) if (vge_debug) printf x #define DPRINTFN(n, x) if (vge_debug >= (n)) printf x const struct pci_matchid vge_devices[] = { { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT612x }, }; #ifdef VGE_EEPROM /* * Read a word of data stored in the EEPROM at address 'addr.' */ void vge_eeprom_getword(struct vge_softc *sc, int addr, u_int16_t *dest) { int i; u_int16_t word = 0; /* * Enter EEPROM embedded programming mode. In order to * access the EEPROM at all, we first have to set the * EELOAD bit in the CHIPCFG2 register. */ CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD); CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/); /* Select the address of the word we want to read */ CSR_WRITE_1(sc, VGE_EEADDR, addr); /* Issue read command */ CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD); /* Wait for the done bit to be set. */ for (i = 0; i < VGE_TIMEOUT; i++) { if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE) break; } if (i == VGE_TIMEOUT) { printf("%s: EEPROM read timed out\n", sc->vge_dev.dv_xname); *dest = 0; return; } /* Read the result */ word = CSR_READ_2(sc, VGE_EERDDAT); /* Turn off EEPROM access mode. */ CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/); CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD); *dest = word; } #endif /* * Read a sequence of words from the EEPROM. */ void vge_read_eeprom(struct vge_softc *sc, caddr_t dest, int off, int cnt, int swap) { int i; #ifdef VGE_EEPROM u_int16_t word = 0, *ptr; for (i = 0; i < cnt; i++) { vge_eeprom_getword(sc, off + i, &word); ptr = (u_int16_t *)(dest + (i * 2)); if (swap) *ptr = ntohs(word); else *ptr = word; } #else for (i = 0; i < ETHER_ADDR_LEN; i++) dest[i] = CSR_READ_1(sc, VGE_PAR0 + i); #endif } void vge_miipoll_stop(struct vge_softc *sc) { int i; CSR_WRITE_1(sc, VGE_MIICMD, 0); for (i = 0; i < VGE_TIMEOUT; i++) { DELAY(1); if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) break; } if (i == VGE_TIMEOUT) printf("%s: failed to idle MII autopoll\n", sc->vge_dev.dv_xname); } void vge_miipoll_start(struct vge_softc *sc) { int i; /* First, make sure we're idle. */ CSR_WRITE_1(sc, VGE_MIICMD, 0); CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL); for (i = 0; i < VGE_TIMEOUT; i++) { DELAY(1); if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) break; } if (i == VGE_TIMEOUT) { printf("%s: failed to idle MII autopoll\n", sc->vge_dev.dv_xname); return; } /* Now enable auto poll mode. */ CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO); /* And make sure it started. */ for (i = 0; i < VGE_TIMEOUT; i++) { DELAY(1); if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0) break; } if (i == VGE_TIMEOUT) printf("%s: failed to start MII autopoll\n", sc->vge_dev.dv_xname); } int vge_miibus_readreg(struct device *dev, int phy, int reg) { struct vge_softc *sc = (struct vge_softc *)dev; int i, s; u_int16_t rval = 0; if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F)) return(0); s = splnet(); vge_miipoll_stop(sc); /* Specify the register we want to read. */ CSR_WRITE_1(sc, VGE_MIIADDR, reg); /* Issue read command. */ CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD); /* Wait for the read command bit to self-clear. */ for (i = 0; i < VGE_TIMEOUT; i++) { DELAY(1); if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0) break; } if (i == VGE_TIMEOUT) printf("%s: MII read timed out\n", sc->vge_dev.dv_xname); else rval = CSR_READ_2(sc, VGE_MIIDATA); vge_miipoll_start(sc); splx(s); return (rval); } void vge_miibus_writereg(struct device *dev, int phy, int reg, int data) { struct vge_softc *sc = (struct vge_softc *)dev; int i, s; if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F)) return; s = splnet(); vge_miipoll_stop(sc); /* Specify the register we want to write. */ CSR_WRITE_1(sc, VGE_MIIADDR, reg); /* Specify the data we want to write. */ CSR_WRITE_2(sc, VGE_MIIDATA, data); /* Issue write command. */ CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD); /* Wait for the write command bit to self-clear. */ for (i = 0; i < VGE_TIMEOUT; i++) { DELAY(1); if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0) break; } if (i == VGE_TIMEOUT) { printf("%s: MII write timed out\n", sc->vge_dev.dv_xname); } vge_miipoll_start(sc); splx(s); } void vge_cam_clear(struct vge_softc *sc) { int i; /* * Turn off all the mask bits. This tells the chip * that none of the entries in the CAM filter are valid. * desired entries will be enabled as we fill the filter in. */ CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL); CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK); CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE); for (i = 0; i < 8; i++) CSR_WRITE_1(sc, VGE_CAM0 + i, 0); /* Clear the VLAN filter too. */ CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0); for (i = 0; i < 8; i++) CSR_WRITE_1(sc, VGE_CAM0 + i, 0); CSR_WRITE_1(sc, VGE_CAMADDR, 0); CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL); CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR); sc->vge_camidx = 0; } int vge_cam_set(struct vge_softc *sc, uint8_t *addr) { int i, error = 0; if (sc->vge_camidx == VGE_CAM_MAXADDRS) return(ENOSPC); /* Select the CAM data page. */ CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL); CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA); /* Set the filter entry we want to update and enable writing. */ CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx); /* Write the address to the CAM registers */ for (i = 0; i < ETHER_ADDR_LEN; i++) CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]); /* Issue a write command. */ CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE); /* Wake for it to clear. */ for (i = 0; i < VGE_TIMEOUT; i++) { DELAY(1); if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0) break; } if (i == VGE_TIMEOUT) { printf("%s: setting CAM filter failed\n", sc->vge_dev.dv_xname); error = EIO; goto fail; } /* Select the CAM mask page. */ CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL); CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK); /* Set the mask bit that enables this filter. */ CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8), 1<<(sc->vge_camidx & 7)); sc->vge_camidx++; fail: /* Turn off access to CAM. */ CSR_WRITE_1(sc, VGE_CAMADDR, 0); CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL); CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR); return (error); } /* * Program the multicast filter. We use the 64-entry CAM filter * for perfect filtering. If there's more than 64 multicast addresses, * we use the hash filter instead. */ void vge_setmulti(struct vge_softc *sc) { struct arpcom *ac = &sc->arpcom; struct ifnet *ifp = &ac->ac_if; struct ether_multi *enm; struct ether_multistep step; int error; u_int32_t h = 0, hashes[2] = { 0, 0 }; /* First, zot all the multicast entries. */ vge_cam_clear(sc); CSR_WRITE_4(sc, VGE_MAR0, 0); CSR_WRITE_4(sc, VGE_MAR1, 0); ifp->if_flags &= ~IFF_ALLMULTI; /* * If the user wants allmulti or promisc mode, enable reception * of all multicast frames. */ if (ifp->if_flags & IFF_PROMISC) { allmulti: CSR_WRITE_4(sc, VGE_MAR0, 0xFFFFFFFF); CSR_WRITE_4(sc, VGE_MAR1, 0xFFFFFFFF); ifp->if_flags |= IFF_ALLMULTI; return; } /* Now program new ones */ ETHER_FIRST_MULTI(step, ac, enm); while (enm != NULL) { if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) goto allmulti; error = vge_cam_set(sc, enm->enm_addrlo); if (error) break; ETHER_NEXT_MULTI(step, enm); } /* If there were too many addresses, use the hash filter. */ if (error) { vge_cam_clear(sc); ETHER_FIRST_MULTI(step, ac, enm); while (enm != NULL) { h = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) >> 26; hashes[h >> 5] |= 1 << (h & 0x1f); ETHER_NEXT_MULTI(step, enm); } CSR_WRITE_4(sc, VGE_MAR0, hashes[0]); CSR_WRITE_4(sc, VGE_MAR1, hashes[1]); } } void vge_reset(struct vge_softc *sc) { int i; CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET); for (i = 0; i < VGE_TIMEOUT; i++) { DELAY(5); if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0) break; } if (i == VGE_TIMEOUT) { printf("%s: soft reset timed out", sc->vge_dev.dv_xname); CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE); DELAY(2000); } DELAY(5000); CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD); for (i = 0; i < VGE_TIMEOUT; i++) { DELAY(5); if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0) break; } if (i == VGE_TIMEOUT) { printf("%s: EEPROM reload timed out\n", sc->vge_dev.dv_xname); return; } CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI); } /* * Probe for a VIA gigabit chip. Check the PCI vendor and device * IDs against our list and return a device name if we find a match. */ int vge_probe(struct device *dev, void *match, void *aux) { return (pci_matchbyid((struct pci_attach_args *)aux, vge_devices, sizeof(vge_devices)/sizeof(vge_devices[0]))); } /* * Allocate memory for RX/TX rings */ int vge_allocmem(struct vge_softc *sc) { int nseg, rseg; int i, error; nseg = 32; /* Allocate DMA'able memory for the TX ring */ error = bus_dmamap_create(sc->sc_dmat, VGE_TX_LIST_SZ, 1, VGE_TX_LIST_SZ, 0, BUS_DMA_ALLOCNOW, &sc->vge_ldata.vge_tx_list_map); if (error) return (ENOMEM); error = bus_dmamem_alloc(sc->sc_dmat, VGE_TX_LIST_SZ, ETHER_ALIGN, 0, &sc->vge_ldata.vge_tx_listseg, 1, &rseg, BUS_DMA_NOWAIT); if (error) { printf("%s: can't alloc TX list\n", sc->vge_dev.dv_xname); return (ENOMEM); } /* Load the map for the TX ring. */ error = bus_dmamem_map(sc->sc_dmat, &sc->vge_ldata.vge_tx_listseg, 1, VGE_TX_LIST_SZ, (caddr_t *)&sc->vge_ldata.vge_tx_list, BUS_DMA_NOWAIT); memset(sc->vge_ldata.vge_tx_list, 0, VGE_TX_LIST_SZ); if (error) { printf("%s: can't map TX dma buffers\n", sc->vge_dev.dv_xname); bus_dmamem_free(sc->sc_dmat, &sc->vge_ldata.vge_tx_listseg, rseg); return (ENOMEM); } error = bus_dmamap_load(sc->sc_dmat, sc->vge_ldata.vge_tx_list_map, sc->vge_ldata.vge_tx_list, VGE_TX_LIST_SZ, NULL, BUS_DMA_NOWAIT); if (error) { printf("%s: can't load TX dma map\n", sc->vge_dev.dv_xname); bus_dmamap_destroy(sc->sc_dmat, sc->vge_ldata.vge_tx_list_map); bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->vge_ldata.vge_tx_list, VGE_TX_LIST_SZ); bus_dmamem_free(sc->sc_dmat, &sc->vge_ldata.vge_tx_listseg, rseg); return (ENOMEM); } /* Create DMA maps for TX buffers */ for (i = 0; i < VGE_TX_DESC_CNT; i++) { error = bus_dmamap_create(sc->sc_dmat, MCLBYTES * nseg, nseg, MCLBYTES, 0, BUS_DMA_ALLOCNOW, &sc->vge_ldata.vge_tx_dmamap[i]); if (error) { printf("%s: can't create DMA map for TX\n", sc->vge_dev.dv_xname); return (ENOMEM); } } /* Allocate DMA'able memory for the RX ring */ error = bus_dmamap_create(sc->sc_dmat, VGE_RX_LIST_SZ, 1, VGE_RX_LIST_SZ, 0, BUS_DMA_ALLOCNOW, &sc->vge_ldata.vge_rx_list_map); if (error) return (ENOMEM); error = bus_dmamem_alloc(sc->sc_dmat, VGE_RX_LIST_SZ, VGE_RING_ALIGN, 0, &sc->vge_ldata.vge_rx_listseg, 1, &rseg, BUS_DMA_NOWAIT); if (error) { printf("%s: can't alloc RX list\n", sc->vge_dev.dv_xname); return (ENOMEM); } /* Load the map for the RX ring. */ error = bus_dmamem_map(sc->sc_dmat, &sc->vge_ldata.vge_rx_listseg, 1, VGE_RX_LIST_SZ, (caddr_t *)&sc->vge_ldata.vge_rx_list, BUS_DMA_NOWAIT); memset(sc->vge_ldata.vge_rx_list, 0, VGE_RX_LIST_SZ); if (error) { printf("%s: can't map RX dma buffers\n", sc->vge_dev.dv_xname); bus_dmamem_free(sc->sc_dmat, &sc->vge_ldata.vge_rx_listseg, rseg); return (ENOMEM); } error = bus_dmamap_load(sc->sc_dmat, sc->vge_ldata.vge_rx_list_map, sc->vge_ldata.vge_rx_list, VGE_RX_LIST_SZ, NULL, BUS_DMA_NOWAIT); if (error) { printf("%s: can't load RX dma map\n", sc->vge_dev.dv_xname); bus_dmamap_destroy(sc->sc_dmat, sc->vge_ldata.vge_rx_list_map); bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->vge_ldata.vge_rx_list, VGE_RX_LIST_SZ); bus_dmamem_free(sc->sc_dmat, &sc->vge_ldata.vge_rx_listseg, rseg); return (ENOMEM); } /* Create DMA maps for RX buffers */ for (i = 0; i < VGE_RX_DESC_CNT; i++) { error = bus_dmamap_create(sc->sc_dmat, MCLBYTES * nseg, nseg, MCLBYTES, 0, BUS_DMA_ALLOCNOW, &sc->vge_ldata.vge_rx_dmamap[i]); if (error) { printf("%s: can't create DMA map for RX\n", sc->vge_dev.dv_xname); return (ENOMEM); } } return (0); } /* * Attach the interface. Allocate softc structures, do ifmedia * setup and ethernet/BPF attach. */ void vge_attach(struct device *parent, struct device *self, void *aux) { u_char eaddr[ETHER_ADDR_LEN]; u_int16_t as[3]; struct vge_softc *sc = (struct vge_softc *)self; struct pci_attach_args *pa = aux; pci_chipset_tag_t pc = pa->pa_pc; pci_intr_handle_t ih; const char *intrstr = NULL; struct ifnet *ifp; int error = 0, i; bus_size_t iosize; /* * Map control/status registers. */ if (pci_mapreg_map(pa, VGE_PCI_LOMEM, PCI_MAPREG_TYPE_MEM, 0, &sc->vge_btag, &sc->vge_bhandle, NULL, &iosize, 0)) { if (pci_mapreg_map(pa, VGE_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0, &sc->vge_btag, &sc->vge_bhandle, NULL, &iosize, 0)) { printf(": can't map mem or i/o space\n"); return; } } /* Allocate interrupt */ if (pci_intr_map(pa, &ih)) { printf(": couldn't map interrupt\n"); return; } intrstr = pci_intr_string(pc, ih); sc->vge_intrhand = pci_intr_establish(pc, ih, IPL_NET, vge_intr, sc, sc->vge_dev.dv_xname); if (sc->vge_intrhand == NULL) { printf(": couldn't establish interrupt"); if (intrstr != NULL) printf(" at %s", intrstr); return; } printf(": %s", intrstr); sc->sc_dmat = pa->pa_dmat; /* Reset the adapter. */ vge_reset(sc); /* * Get station address from the EEPROM. */ vge_read_eeprom(sc, (caddr_t)as, VGE_EE_EADDR, 3, 0); for (i = 0; i < 3; i++) { eaddr[(i * 2) + 0] = as[i] & 0xff; eaddr[(i * 2) + 1] = as[i] >> 8; } bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN); printf(", address %s\n", ether_sprintf(sc->arpcom.ac_enaddr)); error = vge_allocmem(sc); if (error) return; ifp = &sc->arpcom.ac_if; ifp->if_softc = sc; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = vge_ioctl; ifp->if_start = vge_start; ifp->if_watchdog = vge_watchdog; ifp->if_init = vge_init; ifp->if_baudrate = 1000000000; #ifdef VGE_JUMBO ifp->if_hardmtu = VGE_JUMBO_MTU; #endif IFQ_SET_MAXLEN(&ifp->if_snd, VGE_IFQ_MAXLEN); IFQ_SET_READY(&ifp->if_snd); ifp->if_capabilities = IFCAP_VLAN_MTU | IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4; /* Set interface name */ strlcpy(ifp->if_xname, sc->vge_dev.dv_xname, IFNAMSIZ); /* Do MII setup */ sc->sc_mii.mii_ifp = ifp; sc->sc_mii.mii_readreg = vge_miibus_readreg; sc->sc_mii.mii_writereg = vge_miibus_writereg; sc->sc_mii.mii_statchg = vge_miibus_statchg; ifmedia_init(&sc->sc_mii.mii_media, 0, vge_ifmedia_upd, vge_ifmedia_sts); mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY, 0); if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) { printf("%s: no PHY found!\n", sc->vge_dev.dv_xname); ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL); ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL); } else ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO); timeout_set(&sc->timer_handle, vge_tick, sc); /* * Call MI attach routine. */ if_attach(ifp); ether_ifattach(ifp); } int vge_newbuf(struct vge_softc *sc, int idx, struct mbuf *m) { struct mbuf *m_new = NULL; struct vge_rx_desc *r; bus_dmamap_t rxmap = sc->vge_ldata.vge_rx_dmamap[idx]; int i; if (m == NULL) { /* Allocate a new mbuf */ MGETHDR(m_new, M_DONTWAIT, MT_DATA); if (m_new == NULL) return (ENOBUFS); /* Allocate a cluster */ MCLGET(m_new, M_DONTWAIT); if (!(m_new->m_flags & M_EXT)) { m_freem(m_new); return (ENOBUFS); } m = m_new; } else m->m_data = m->m_ext.ext_buf; m->m_len = m->m_pkthdr.len = MCLBYTES; /* Fix-up alignment so payload is doubleword-aligned */ /* XXX m_adj(m, ETHER_ALIGN); */ if (bus_dmamap_load_mbuf(sc->sc_dmat, rxmap, m, BUS_DMA_NOWAIT)) return (ENOBUFS); if (rxmap->dm_nsegs > 1) goto out; /* Map the segments into RX descriptors */ r = &sc->vge_ldata.vge_rx_list[idx]; if (letoh32(r->vge_sts) & VGE_RDSTS_OWN) { printf("%s: tried to map a busy RX descriptor\n", sc->vge_dev.dv_xname); goto out; } r->vge_buflen = htole16(VGE_BUFLEN(rxmap->dm_segs[0].ds_len) | VGE_RXDESC_I); r->vge_addrlo = htole32(VGE_ADDR_LO(rxmap->dm_segs[0].ds_addr)); r->vge_addrhi = htole16(VGE_ADDR_HI(rxmap->dm_segs[0].ds_addr) & 0xFFFF); r->vge_sts = htole32(0); r->vge_ctl = htole32(0); /* * Note: the manual fails to document the fact that for * proper operation, the driver needs to replenish the RX * DMA ring 4 descriptors at a time (rather than one at a * time, like most chips). We can allocate the new buffers * but we should not set the OWN bits until we're ready * to hand back 4 of them in one shot. */ #define VGE_RXCHUNK 4 sc->vge_rx_consumed++; if (sc->vge_rx_consumed == VGE_RXCHUNK) { for (i = idx; i != idx - sc->vge_rx_consumed; i--) sc->vge_ldata.vge_rx_list[i].vge_sts |= htole32(VGE_RDSTS_OWN); sc->vge_rx_consumed = 0; } sc->vge_ldata.vge_rx_mbuf[idx] = m; bus_dmamap_sync(sc->sc_dmat, rxmap, 0, rxmap->dm_mapsize, BUS_DMASYNC_PREREAD); return (0); out: DPRINTF(("vge_newbuf: out of memory\n")); if (m_new != NULL) m_freem(m_new); return (ENOMEM); } int vge_tx_list_init(struct vge_softc *sc) { bzero ((char *)sc->vge_ldata.vge_tx_list, VGE_TX_LIST_SZ); bzero ((char *)&sc->vge_ldata.vge_tx_mbuf, (VGE_TX_DESC_CNT * sizeof(struct mbuf *))); bus_dmamap_sync(sc->sc_dmat, sc->vge_ldata.vge_tx_list_map, 0, sc->vge_ldata.vge_tx_list_map->dm_mapsize, BUS_DMASYNC_PREWRITE); sc->vge_ldata.vge_tx_prodidx = 0; sc->vge_ldata.vge_tx_considx = 0; sc->vge_ldata.vge_tx_free = VGE_TX_DESC_CNT; return (0); } /* Init RX descriptors and allocate mbufs with vge_newbuf() * A ring is used, and last descriptor points to first. */ int vge_rx_list_init(struct vge_softc *sc) { int i; bzero ((char *)sc->vge_ldata.vge_rx_list, VGE_RX_LIST_SZ); bzero ((char *)&sc->vge_ldata.vge_rx_mbuf, (VGE_RX_DESC_CNT * sizeof(struct mbuf *))); sc->vge_rx_consumed = 0; for (i = 0; i < VGE_RX_DESC_CNT; i++) { if (vge_newbuf(sc, i, NULL) == ENOBUFS) return (ENOBUFS); } /* Flush the RX descriptors */ bus_dmamap_sync(sc->sc_dmat, sc->vge_ldata.vge_rx_list_map, 0, sc->vge_ldata.vge_rx_list_map->dm_mapsize, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD); sc->vge_ldata.vge_rx_prodidx = 0; sc->vge_rx_consumed = 0; sc->vge_head = sc->vge_tail = NULL; return (0); } /* * RX handler. We support the reception of jumbo frames that have * been fragmented across multiple 2K mbuf cluster buffers. */ void vge_rxeof(struct vge_softc *sc) { struct mbuf *m; struct ifnet *ifp; int i, total_len; int lim = 0; struct vge_rx_desc *cur_rx; u_int32_t rxstat, rxctl; ifp = &sc->arpcom.ac_if; i = sc->vge_ldata.vge_rx_prodidx; /* Invalidate the descriptor memory */ bus_dmamap_sync(sc->sc_dmat, sc->vge_ldata.vge_rx_list_map, 0, sc->vge_ldata.vge_rx_list_map->dm_mapsize, BUS_DMASYNC_POSTREAD); while (!VGE_OWN(&sc->vge_ldata.vge_rx_list[i])) { struct mbuf *m0 = NULL; cur_rx = &sc->vge_ldata.vge_rx_list[i]; m = sc->vge_ldata.vge_rx_mbuf[i]; total_len = VGE_RXBYTES(cur_rx); rxstat = letoh32(cur_rx->vge_sts); rxctl = letoh32(cur_rx->vge_ctl); /* Invalidate the RX mbuf and unload its map */ bus_dmamap_sync(sc->sc_dmat, sc->vge_ldata.vge_rx_dmamap[i], 0, sc->vge_ldata.vge_rx_dmamap[i]->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, sc->vge_ldata.vge_rx_dmamap[i]); /* * If the 'start of frame' bit is set, this indicates * either the first fragment in a multi-fragment receive, * or an intermediate fragment. Either way, we want to * accumulate the buffers. */ if (rxstat & VGE_RXPKT_SOF) { DPRINTF(("vge_rxeof: SOF\n")); m->m_len = MCLBYTES; if (sc->vge_head == NULL) sc->vge_head = sc->vge_tail = m; else { m->m_flags &= ~M_PKTHDR; sc->vge_tail->m_next = m; sc->vge_tail = m; } vge_newbuf(sc, i, NULL); VGE_RX_DESC_INC(i); continue; } /* * Bad/error frames will have the RXOK bit cleared. * However, there's one error case we want to allow: * if a VLAN tagged frame arrives and the chip can't * match it against the CAM filter, it considers this * a 'VLAN CAM filter miss' and clears the 'RXOK' bit. * We don't want to drop the frame though: our VLAN * filtering is done in software. */ if (!(rxstat & VGE_RDSTS_RXOK) && !(rxstat & VGE_RDSTS_VIDM) && !(rxstat & VGE_RDSTS_CSUMERR)) { ifp->if_ierrors++; /* * If this is part of a multi-fragment packet, * discard all the pieces. */ if (sc->vge_head != NULL) { m_freem(sc->vge_head); sc->vge_head = sc->vge_tail = NULL; } vge_newbuf(sc, i, m); VGE_RX_DESC_INC(i); continue; } /* * If allocating a replacement mbuf fails, * reload the current one. */ if (vge_newbuf(sc, i, NULL) == ENOBUFS) { if (sc->vge_head != NULL) { m_freem(sc->vge_head); sc->vge_head = sc->vge_tail = NULL; } m0 = m_devget(mtod(m, char *) - ETHER_ALIGN, total_len - ETHER_CRC_LEN + ETHER_ALIGN, 0, ifp, NULL); vge_newbuf(sc, i, m); if (m0 == NULL) { ifp->if_ierrors++; continue; } m_adj(m0, ETHER_ALIGN); m = m0; VGE_RX_DESC_INC(i); continue; } VGE_RX_DESC_INC(i); if (sc->vge_head != NULL) { m->m_len = total_len % MCLBYTES; /* * Special case: if there's 4 bytes or less * in this buffer, the mbuf can be discarded: * the last 4 bytes is the CRC, which we don't * care about anyway. */ if (m->m_len <= ETHER_CRC_LEN) { sc->vge_tail->m_len -= (ETHER_CRC_LEN - m->m_len); m_freem(m); } else { m->m_len -= ETHER_CRC_LEN; m->m_flags &= ~M_PKTHDR; sc->vge_tail->m_next = m; } m = sc->vge_head; sc->vge_head = sc->vge_tail = NULL; m->m_pkthdr.len = total_len - ETHER_CRC_LEN; } else m->m_pkthdr.len = m->m_len = (total_len - ETHER_CRC_LEN); #ifdef __STRICT_ALIGNMENT bcopy(m->m_data, m->m_data + ETHER_ALIGN, total_len); m->m_data += ETHER_ALIGN; #endif ifp->if_ipackets++; m->m_pkthdr.rcvif = ifp; /* Do RX checksumming */ /* Check IP header checksum */ if ((rxctl & VGE_RDCTL_IPPKT) && (rxctl & VGE_RDCTL_IPCSUMOK)) m->m_pkthdr.csum_flags |= M_IPV4_CSUM_IN_OK; /* Check TCP/UDP checksum */ if ((rxctl & (VGE_RDCTL_TCPPKT|VGE_RDCTL_UDPPKT)) && (rxctl & VGE_RDCTL_PROTOCSUMOK)) m->m_pkthdr.csum_flags |= M_TCP_CSUM_IN_OK | M_UDP_CSUM_IN_OK; ether_input_mbuf(ifp, m); lim++; if (lim == VGE_RX_DESC_CNT) break; } /* Flush the RX DMA ring */ bus_dmamap_sync(sc->sc_dmat, sc->vge_ldata.vge_rx_list_map, 0, sc->vge_ldata.vge_rx_list_map->dm_mapsize, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD); sc->vge_ldata.vge_rx_prodidx = i; CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, lim); } void vge_txeof(struct vge_softc *sc) { struct ifnet *ifp; u_int32_t txstat; int idx; ifp = &sc->arpcom.ac_if; idx = sc->vge_ldata.vge_tx_considx; /* Invalidate the TX descriptor list */ bus_dmamap_sync(sc->sc_dmat, sc->vge_ldata.vge_tx_list_map, 0, sc->vge_ldata.vge_tx_list_map->dm_mapsize, BUS_DMASYNC_POSTREAD); /* Transmitted frames can be now free'd from the TX list */ while (idx != sc->vge_ldata.vge_tx_prodidx) { txstat = letoh32(sc->vge_ldata.vge_tx_list[idx].vge_sts); if (txstat & VGE_TDSTS_OWN) break; m_freem(sc->vge_ldata.vge_tx_mbuf[idx]); sc->vge_ldata.vge_tx_mbuf[idx] = NULL; bus_dmamap_unload(sc->sc_dmat, sc->vge_ldata.vge_tx_dmamap[idx]); if (txstat & (VGE_TDSTS_EXCESSCOLL|VGE_TDSTS_COLL)) ifp->if_collisions++; if (txstat & VGE_TDSTS_TXERR) ifp->if_oerrors++; else ifp->if_opackets++; sc->vge_ldata.vge_tx_free++; VGE_TX_DESC_INC(idx); } /* No changes made to the TX ring, so no flush needed */ if (idx != sc->vge_ldata.vge_tx_considx) { sc->vge_ldata.vge_tx_considx = idx; ifp->if_flags &= ~IFF_OACTIVE; ifp->if_timer = 0; } /* * If not all descriptors have been released reaped yet, * reload the timer so that we will eventually get another * interrupt that will cause us to re-enter this routine. * This is done in case the transmitter has gone idle. */ if (sc->vge_ldata.vge_tx_free != VGE_TX_DESC_CNT) CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE); } void vge_tick(void *xsc) { struct vge_softc *sc = xsc; struct ifnet *ifp = &sc->arpcom.ac_if; struct mii_data *mii = &sc->sc_mii; int s; s = splnet(); mii_tick(mii); if (sc->vge_link) { if (!(mii->mii_media_status & IFM_ACTIVE)) { sc->vge_link = 0; ifp->if_link_state = LINK_STATE_DOWN; if_link_state_change(ifp); } } else { if (mii->mii_media_status & IFM_ACTIVE && IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { sc->vge_link = 1; if (mii->mii_media_status & IFM_FDX) ifp->if_link_state = LINK_STATE_FULL_DUPLEX; else ifp->if_link_state = LINK_STATE_HALF_DUPLEX; if_link_state_change(ifp); if (!IFQ_IS_EMPTY(&ifp->if_snd)) vge_start(ifp); } } timeout_add(&sc->timer_handle, hz); splx(s); } int vge_intr(void *arg) { struct vge_softc *sc = arg; struct ifnet *ifp; u_int32_t status; int claimed = 0; ifp = &sc->arpcom.ac_if; if (!(ifp->if_flags & IFF_UP)) return 0; /* Disable interrupts */ CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK); for (;;) { status = CSR_READ_4(sc, VGE_ISR); DPRINTFN(3, ("vge_intr: status=%#x\n", status)); /* If the card has gone away the read returns 0xffffffff. */ if (status == 0xFFFFFFFF) break; if (status) { CSR_WRITE_4(sc, VGE_ISR, status); } if ((status & VGE_INTRS) == 0) break; claimed = 1; if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO)) vge_rxeof(sc); if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) { DPRINTFN(2, ("vge_intr: RX error, recovering\n")); vge_rxeof(sc); CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN); CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK); } if (status & (VGE_ISR_TXOK0|VGE_ISR_TIMER0)) vge_txeof(sc); if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL)) { DPRINTFN(2, ("DMA_STALL\n")); vge_init(ifp); } if (status & VGE_ISR_LINKSTS) { timeout_del(&sc->timer_handle); vge_tick(sc); } } /* Re-enable interrupts */ CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK); if (!IFQ_IS_EMPTY(&ifp->if_snd)) vge_start(ifp); return (claimed); } /* * Encapsulate an mbuf chain into the TX ring by combining it w/ * the descriptors. */ int vge_encap(struct vge_softc *sc, struct mbuf *m_head, int idx) { struct ifnet *ifp = &sc->arpcom.ac_if; bus_dmamap_t txmap; struct vge_tx_desc *d = NULL; struct vge_tx_frag *f; struct mbuf *mnew = NULL; int error, frag; u_int32_t vge_flags; vge_flags = 0; if (m_head->m_pkthdr.csum_flags & M_IPV4_CSUM_OUT) vge_flags |= VGE_TDCTL_IPCSUM; if (m_head->m_pkthdr.csum_flags & M_TCPV4_CSUM_OUT) vge_flags |= VGE_TDCTL_TCPCSUM; if (m_head->m_pkthdr.csum_flags & M_UDPV4_CSUM_OUT) vge_flags |= VGE_TDCTL_UDPCSUM; txmap = sc->vge_ldata.vge_tx_dmamap[idx]; repack: error = bus_dmamap_load_mbuf(sc->sc_dmat, txmap, m_head, BUS_DMA_NOWAIT); if (error) { printf("%s: can't map mbuf (error %d)\n", sc->vge_dev.dv_xname, error); return (ENOBUFS); } d = &sc->vge_ldata.vge_tx_list[idx]; /* If owned by chip, fail */ if (letoh32(d->vge_sts) & VGE_TDSTS_OWN) return (ENOBUFS); for (frag = 0; frag < txmap->dm_nsegs; frag++) { /* Check if we have used all 7 fragments. */ if (frag == VGE_TX_FRAGS) break; f = &d->vge_frag[frag]; f->vge_buflen = htole16(VGE_BUFLEN(txmap->dm_segs[frag].ds_len)); f->vge_addrlo = htole32(VGE_ADDR_LO(txmap->dm_segs[frag].ds_addr)); f->vge_addrhi = htole16(VGE_ADDR_HI(txmap->dm_segs[frag].ds_addr) & 0xFFFF); } /* * We used up all 7 fragments! Now what we have to do is * copy the data into a mbuf cluster and map that. */ if (frag == VGE_TX_FRAGS) { MGETHDR(mnew, M_DONTWAIT, MT_DATA); if (mnew == NULL) return (ENOBUFS); if (m_head->m_pkthdr.len > MHLEN) { MCLGET(mnew, M_DONTWAIT); if (!(mnew->m_flags & M_EXT)) { m_freem(mnew); return (ENOBUFS); } } m_copydata(m_head, 0, m_head->m_pkthdr.len, mtod(mnew, caddr_t)); mnew->m_pkthdr.len = mnew->m_len = m_head->m_pkthdr.len; IFQ_DEQUEUE(&ifp->if_snd, m_head); m_freem(m_head); m_head = mnew; goto repack; } /* This chip does not do auto-padding */ if (m_head->m_pkthdr.len < VGE_MIN_FRAMELEN) { f = &d->vge_frag[frag]; f->vge_buflen = htole16(VGE_BUFLEN(VGE_MIN_FRAMELEN - m_head->m_pkthdr.len)); f->vge_addrlo = htole32(VGE_ADDR_LO(txmap->dm_segs[0].ds_addr)); f->vge_addrhi = htole16(VGE_ADDR_HI(txmap->dm_segs[0].ds_addr) & 0xFFFF); m_head->m_pkthdr.len = VGE_MIN_FRAMELEN; frag++; } /* For some reason, we need to tell the card fragment + 1 */ frag++; bus_dmamap_sync(sc->sc_dmat, txmap, 0, txmap->dm_mapsize, BUS_DMASYNC_PREWRITE); d->vge_sts = htole32(m_head->m_pkthdr.len << 16); d->vge_ctl = htole32(vge_flags|(frag << 28) | VGE_TD_LS_NORM); if (m_head->m_pkthdr.len > ETHERMTU + ETHER_HDR_LEN) d->vge_ctl |= htole32(VGE_TDCTL_JUMBO); sc->vge_ldata.vge_tx_dmamap[idx] = txmap; sc->vge_ldata.vge_tx_mbuf[idx] = m_head; sc->vge_ldata.vge_tx_free--; sc->vge_ldata.vge_tx_list[idx].vge_sts |= htole32(VGE_TDSTS_OWN); idx++; if (mnew == NULL) { /* if mbuf is coalesced, it is already dequeued */ IFQ_DEQUEUE(&ifp->if_snd, m_head); } return (0); } /* * Main transmit routine. */ void vge_start(struct ifnet *ifp) { struct vge_softc *sc; struct mbuf *m_head = NULL; int idx, pidx = 0; sc = ifp->if_softc; if (!sc->vge_link || ifp->if_flags & IFF_OACTIVE) return; if (IFQ_IS_EMPTY(&ifp->if_snd)) return; idx = sc->vge_ldata.vge_tx_prodidx; pidx = idx - 1; if (pidx < 0) pidx = VGE_TX_DESC_CNT - 1; while (sc->vge_ldata.vge_tx_mbuf[idx] == NULL) { IFQ_POLL(&ifp->if_snd, m_head); if (m_head == NULL) break; if (vge_encap(sc, m_head, idx)) { ifp->if_flags |= IFF_OACTIVE; break; } sc->vge_ldata.vge_tx_list[pidx].vge_frag[0].vge_buflen |= htole16(VGE_TXDESC_Q); pidx = idx; VGE_TX_DESC_INC(idx); } if (idx == sc->vge_ldata.vge_tx_prodidx) { return; } /* Flush the TX descriptors */ bus_dmamap_sync(sc->sc_dmat, sc->vge_ldata.vge_tx_list_map, 0, sc->vge_ldata.vge_tx_list_map->dm_mapsize, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD); /* Issue a transmit command. */ CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0); sc->vge_ldata.vge_tx_prodidx = idx; /* * Use the countdown timer for interrupt moderation. * 'TX done' interrupts are disabled. Instead, we reset the * countdown timer, which will begin counting until it hits * the value in the SSTIMER register, and then trigger an * interrupt. Each time we set the TIMER0_ENABLE bit, the * the timer count is reloaded. Only when the transmitter * is idle will the timer hit 0 and an interrupt fire. */ CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE); /* * Set a timeout in case the chip goes out to lunch. */ ifp->if_timer = 5; } int vge_init(struct ifnet *ifp) { struct vge_softc *sc = ifp->if_softc; int i; /* * Cancel pending I/O and free all RX/TX buffers. */ vge_stop(sc); vge_reset(sc); /* Initialize RX descriptors list */ if (vge_rx_list_init(sc) == ENOBUFS) { printf("%s: init failed: no memory for RX buffers\n", sc->vge_dev.dv_xname); vge_stop(sc); return (ENOBUFS); } /* Initialize TX descriptors */ if (vge_tx_list_init(sc) == ENOBUFS) { printf("%s: init failed: no memory for TX buffers\n", sc->vge_dev.dv_xname); vge_stop(sc); return (ENOBUFS); } /* Set our station address */ for (i = 0; i < ETHER_ADDR_LEN; i++) CSR_WRITE_1(sc, VGE_PAR0 + i, sc->arpcom.ac_enaddr[i]); /* Set receive FIFO threshold */ CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR); CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES); /* Set DMA burst length */ CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN); CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128); CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK); /* Set collision backoff algorithm */ CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM| VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT); CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET); /* Disable LPSEL field in priority resolution */ CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS); /* * Load the addresses of the DMA queues into the chip. * Note that we only use one transmit queue. */ CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0, VGE_ADDR_LO(sc->vge_ldata.vge_tx_listseg.ds_addr)); CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1); CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, VGE_ADDR_LO(sc->vge_ldata.vge_rx_listseg.ds_addr)); CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1); CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT); /* Enable and wake up the RX descriptor queue */ CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN); CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK); /* Enable the TX descriptor queue */ CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0); /* Set up the receive filter -- allow large frames for VLANs. */ CSR_WRITE_1(sc, VGE_RXCTL, VGE_RXCTL_RX_UCAST|VGE_RXCTL_RX_GIANT); /* If we want promiscuous mode, set the allframes bit. */ if (ifp->if_flags & IFF_PROMISC) { CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC); } /* Set capture broadcast bit to capture broadcast frames. */ if (ifp->if_flags & IFF_BROADCAST) { CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_BCAST); } /* Set multicast bit to capture multicast frames. */ if (ifp->if_flags & IFF_MULTICAST) { CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_MCAST); } /* Init the cam filter. */ vge_cam_clear(sc); /* Init the multicast filter. */ vge_setmulti(sc); /* Enable flow control */ CSR_WRITE_1(sc, VGE_CRS2, 0x8B); /* Enable jumbo frame reception (if desired) */ /* Start the MAC. */ CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP); CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL); CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START); /* * Configure one-shot timer for microsecond * resulution and load it for 500 usecs. */ CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES); CSR_WRITE_2(sc, VGE_SSTIMER, 400); /* * Configure interrupt moderation for receive. Enable * the holdoff counter and load it, and set the RX * suppression count to the number of descriptors we * want to allow before triggering an interrupt. * The holdoff timer is in units of 20 usecs. */ #ifdef notyet CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE); /* Select the interrupt holdoff timer page. */ CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL); CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF); CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */ /* Enable use of the holdoff timer. */ CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF); CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD); /* Select the RX suppression threshold page. */ CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL); CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR); CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */ /* Restore the page select bits. */ CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL); CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR); #endif /* * Enable interrupts. */ CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS); CSR_WRITE_4(sc, VGE_ISR, 0); CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK); /* Restore BMCR state */ mii_mediachg(&sc->sc_mii); ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; sc->vge_if_flags = 0; sc->vge_link = 0; if (!timeout_pending(&sc->timer_handle)) timeout_add(&sc->timer_handle, hz); return (0); } /* * Set media options. */ int vge_ifmedia_upd(struct ifnet *ifp) { struct vge_softc *sc = ifp->if_softc; return (mii_mediachg(&sc->sc_mii)); } /* * Report current media status. */ void vge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) { struct vge_softc *sc = ifp->if_softc; mii_pollstat(&sc->sc_mii); ifmr->ifm_active = sc->sc_mii.mii_media_active; ifmr->ifm_status = sc->sc_mii.mii_media_status; } void vge_miibus_statchg(struct device *dev) { struct vge_softc *sc = (struct vge_softc *)dev; struct mii_data *mii; struct ifmedia_entry *ife; mii = &sc->sc_mii; ife = mii->mii_media.ifm_cur; /* * If the user manually selects a media mode, we need to turn * on the forced MAC mode bit in the DIAGCTL register. If the * user happens to choose a full duplex mode, we also need to * set the 'force full duplex' bit. This applies only to * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC * mode is disabled, and in 1000baseT mode, full duplex is * always implied, so we turn on the forced mode bit but leave * the FDX bit cleared. */ switch (IFM_SUBTYPE(ife->ifm_media)) { case IFM_AUTO: CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE); CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE); break; case IFM_1000_T: CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE); CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE); break; case IFM_100_TX: case IFM_10_T: CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE); if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) { CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE); } else { CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE); } break; default: printf("%s: unknown media type: %x\n", sc->vge_dev.dv_xname, IFM_SUBTYPE(ife->ifm_media)); break; } } int vge_ioctl(struct ifnet *ifp, u_long command, caddr_t data) { struct vge_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *) data; struct ifaddr *ifa = (struct ifaddr *) data; int s, error = 0; s = splnet(); if ((error = ether_ioctl(ifp, &sc->arpcom, command, data)) > 0) { splx(s); return (error); } switch (command) { case SIOCSIFADDR: ifp->if_flags |= IFF_UP; switch (ifa->ifa_addr->sa_family) { #ifdef INET case AF_INET: vge_init(ifp); arp_ifinit(&sc->arpcom, ifa); break; #endif default: vge_init(ifp); break; } break; case SIOCSIFMTU: if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ifp->if_hardmtu) error = EINVAL; else if (ifp->if_mtu != ifr->ifr_mtu) ifp->if_mtu = ifr->ifr_mtu; break; case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if (ifp->if_flags & IFF_RUNNING && ifp->if_flags & IFF_PROMISC && !(sc->vge_if_flags & IFF_PROMISC)) { CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC); vge_setmulti(sc); } else if (ifp->if_flags & IFF_RUNNING && !(ifp->if_flags & IFF_PROMISC) && sc->vge_if_flags & IFF_PROMISC) { CSR_CLRBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC); vge_setmulti(sc); } else vge_init(ifp); } else { if (ifp->if_flags & IFF_RUNNING) vge_stop(sc); } sc->vge_if_flags = ifp->if_flags; break; case SIOCADDMULTI: case SIOCDELMULTI: error = (command == SIOCADDMULTI) ? ether_addmulti(ifr, &sc->arpcom) : ether_delmulti(ifr, &sc->arpcom); if (error == ENETRESET) { if (ifp->if_flags & IFF_RUNNING) vge_setmulti(sc); error = 0; } break; case SIOCGIFMEDIA: case SIOCSIFMEDIA: error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, command); break; default: error = ENOTTY; break; } splx(s); return (error); } void vge_watchdog(struct ifnet *ifp) { struct vge_softc *sc = ifp->if_softc; int s; s = splnet(); printf("%s: watchdog timeout\n", sc->vge_dev.dv_xname); ifp->if_oerrors++; vge_txeof(sc); vge_rxeof(sc); vge_init(ifp); splx(s); } /* * Stop the adapter and free any mbufs allocated to the * RX and TX lists. */ void vge_stop(struct vge_softc *sc) { int i; struct ifnet *ifp; ifp = &sc->arpcom.ac_if; ifp->if_timer = 0; timeout_del(&sc->timer_handle); ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK); CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP); CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF); CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF); CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF); CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0); if (sc->vge_head != NULL) { m_freem(sc->vge_head); sc->vge_head = sc->vge_tail = NULL; } /* Free the TX list buffers. */ for (i = 0; i < VGE_TX_DESC_CNT; i++) { if (sc->vge_ldata.vge_tx_mbuf[i] != NULL) { bus_dmamap_unload(sc->sc_dmat, sc->vge_ldata.vge_tx_dmamap[i]); m_freem(sc->vge_ldata.vge_tx_mbuf[i]); sc->vge_ldata.vge_tx_mbuf[i] = NULL; } } /* Free the RX list buffers. */ for (i = 0; i < VGE_RX_DESC_CNT; i++) { if (sc->vge_ldata.vge_rx_mbuf[i] != NULL) { bus_dmamap_unload(sc->sc_dmat, sc->vge_ldata.vge_rx_dmamap[i]); m_freem(sc->vge_ldata.vge_rx_mbuf[i]); sc->vge_ldata.vge_rx_mbuf[i] = NULL; } } }